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Abstract

We introduce a multi-class generalization of AdaBoost with binary weak-
learners. We use a vectorial codification to represent class labels and a multi-
class exponential loss function to evaluate classifier responses. This represen-
tation produces a set of margin values that provide a range of punishments
for failures and rewards for successes. Moreover, the stage-wise optimization
of this model introduces an asymmetric boosting procedure whose costs de-
pend on the number of classes separated by each weak-learner. In this way
the boosting procedure takes into account class imbalances when building
the ensemble. The experiments performed compare this new approach fa-
vorably to AdaBoost.MH, GentleBoost and the SAMME algorithms.

Keywords:
AdaBoost, multi-class classification, asymmetric binary weak-learners,
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1. Introduction1

Boosting algorithms are learning schemes that produce an accurate or2

strong classifier by combining a set of simple base prediction rules or weak-3

learners. Their popularity is based not only on the fact that it is often much4

easier to devise a simple but inaccurate prediction rule than building a highly5

accurate classifier, but also because of the successful practical results and6

good theoretical properties of the algorithm. They have been extensively7
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used for detecting [1, 2, 3, 4] and recognizing [5, 6] faces, people, objects8

and actions [7] in images. The boosting approach works in an iterative9

way. First a weight distribution is defined over the training set. Then, at10

each iteration, the best weak-learner according to the weight distribution is11

selected and combined with the previously selected weak-learners to form12

the strong classifier. Weights are updated to decrease the importance of13

correctly classified samples, so the algorithm tends to concentrate on the14

“difficult” examples.15

The most well-known boosting algorithm, AdaBoost, was introduced in16

the context of two-class (binary) classification, but it was soon extended17

to the multi-class case [8]. Broadly speaking, there are two approaches for18

extending binary Boosting algorithms to the multi-class case, depending on19

whether multi-class or binary weak-learners are used. The most straight-20

forward extension substitutes AdaBoost’s binary weak-learners by multi-21

class ones, this is the case of AdaBoost.M1, AdaBoost.M2 [8], J-classes22

LogitBoost [9], multi-class GentleBoost [10] and SAMME [11]. The second23

approach transforms the original multi-class problem into a set of binary24

problems solved using binary weak-learners, each of which separates the set25

of classes in two groups. Shapire and Singer’s AdaBoost.MH algorithm [12]26

is perhaps the most popular approach of this kind. It creates a set of bi-27

nary problems for each sample and each possible label, providing a pre-28

dictor for each class. An alternative approach is to reduce the multi-class29

problem to multiple binary ones using a codeword to represent each class30

label [13, 14, 15]. When training the weak-learners this binarization process31

may produce imbalanced data distributions, that are known to affect nega-32

tively in the classifier performance [16, 17]. None of the binary multi-class33

boosting algorithms reported in the literature address this issue.34

Another aspect of interest in multi-class algorithms is the codification of35

class labels. Appropriate vectorial encodings usually reduce the complexity36

of the problem. The encoding introduced in [18] for building a multi-class37

Support Vector Machine (SVM), was also used in the SAMME [11] and38

GAMBLE [19] algorithms and is related to other margin-based methods [10].39

Shapire uses Error Correcting Output Codes for solving a multi-class prob-40

lem using multiple binary classifiers [13, 12]. Our proposal uses vectorial41

encodings for representing class labels and classifier responses.42

In this paper we introduce a multi-class generalization of AdaBoost that43

uses ideas present in previous works. We use binary weak-learners to sep-44

arate groups of classes, like [15, 13, 12], and a margin-based exponential45

loss function with a vectorial encoding like [18, 11, 19]. However, the final46

result is new. To model the uncertainty in the classification provided by47

2



each weak-learner we use different vectorial encodings for representing class48

labels and classifier responses. This codification yields an asymmetry in the49

evaluation of classifier performance that produces different margin values50

depending on the number of classes separated by each weak-learner. Thus,51

at each boosting iteration, the sample weight distribution is updated as usu-52

ally according to the performance of the weak-learner, but also, depending53

on the number of classes in each group. In this way our boosting approach54

takes into account both, the uncertainty in the classification of a sample in55

a group of classes, and the imbalances in the number of classes separated by56

the weak-learner [16, 17]. The resulting algorithm is called PIBoost, which57

stands for Partially Informative Boosting, reflecting the idea that the boost-58

ing process collects partial information about classification provided by each59

weak-learner.60

In the experiments conducted we compare two versions of PIBoost with61

GentleBoost [9], AdaBoost.MH [12] and SAMME [11] using 15 databases62

from the UCI repository. These experiments prove that one of PIBoost ver-63

sions provides a statistically significant improvement in performance when64

compared with the other algorithms.65

The rest of the paper is organized as follows. Section 2 presents the66

concepts from binary and multi-class boosting that are most related to our67

proposal. In Section 3 we introduce our multi-class margin expansion, based68

on which in section 4 we present the PIBoost algorithm. Experiments with69

benchmark data are discussed in Section 5. In Section 6 we relate our70

proposal with others in the literature and in Section 7 we draw conclusions.71

Finally, we give the proofs of some results in two Appendices.72

2. Boosting73

In this section we briefly review some background concepts that are di-74

rectly related to our proposal. Suppose we have a set of N labeled instances75

{(xi, li)} , i = 1, . . . , N ; where xi belongs to a domain X and li belongs to76

L = {1, 2, . . . ,K}, the finite label set of the problem (when K = 2 we simply77

use L = {+1,−1}). Henceforth the words label and class will have the same78

meaning. P(L) will denote the power-set of labels, i.e. the set of all possible79

subsets of L. We will use capital letters, e.g. T (x) or H(x), for denoting80

weak or strong classifiers that take values on a finite set of values, like L.81

Small bold letters, e.g. g(x) or f(x), will denote classifiers that take value82

on a set of vectors.83
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2.1. Binary Boosting84

The first successful boosting procedure was introduced by Freund and
Schapire with their AdaBoost algorithm [8] for the problem of binary clas-
sification. It provides a way of combining the performance of many weak
classifiers, G(x) : X → L, here L = {+1,−1}, to produce a powerful “com-
mittee” or strong classifier

H(x) =
M
∑

m=1

αmGm(x),

whose prediction is sign(H(x)).85

AdaBoost can also be seen as a stage-wise algorithm fitting an additive86

model [9, 20]. This interpretation provides, at each round m, a direction for87

classification, Gm(x) = ±1, and a step size, αm, the former understood as88

a sign on a line and the latter as a measure of confidence in the predictions89

of Gm.90

Weak-learners Gm and constants αm are estimated in such a way that
they minimize a loss function [9, 12]

L (l,H(x)) = exp(−lH(x))

defined on the value of z = lH(x) known as margin [15, 10].91

To achieve this a weight distribution is defined over the whole training92

set, assigning each training sample xi a weight wi. At each iteration, m,93

the selected weak-learner is the best classifier according to the weight distri-94

bution. This classifier is added to the ensemble multiplied by the goodness95

parameter αm. Training data xi are re-weighted with L(l, αmGm(x)). So,96

the weights of samples miss-classified by Gm are multiplied by eαm , and are97

thus increased. The weights of correctly classified samples are multiplied by98

e−αm and so decreased (see Algorithm 1). In this way, new weak-learners will99

concentrate on samples located on the frontier between the classes. Other100

loss functions such as the Logit [9], Squared Hinge [10] or Tangent loss [21]101

have also been used for deriving alternative boosting algorithms.102

Note here that there are only two possible margin values ±1 and, hence,103

two possible weight updates e±αm in each iteration. In the next sections, and104

for multi-class classification problems, we will introduce a vectorial encoding105

that provides a margin interpretation that has several possible values, and106

thus, various weight updates.107
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Algorithm 1 : AdaBoost

1: Initialize the weight Vector W with uniform distribution ωi = 1/N , i =
1, . . . , N .

2: for m = 1 to M do
3: Fit a classifier Gm(x) to the training data using weights W.
4: Compute weighted error: Errm =

∑N
i=1 ωiI (Gm(xi) 6= li).

5: Compute αm = (1/2) log ((1− Errm)/Errm).
6: Update weights ωi ← ωi · exp (−αmliGm(xi)) , i = 1, . . . , N .
7: Re-normalize W.
8: end for
9: Output Final Classifier: sign

(

∑M
m=1 αmGm(x)

)

2.2. Multi-class boosting with vectorial encoding108

A successful way to generalize the symmetry of class-label representation
in the binary case to the multi-class case is using a set of vector-valued
class codes that represent the correspondence between the label set L =
{1, . . . ,K} and a collection of vectors Y = {y1, . . . ,yK}, where vector yl

has a value 1 in the l-th co-ordinate and −1
K−1 elsewhere. So, if li = 1, the

code vector representing class 1 is y1 =
(

1, −1
K−1 , . . . ,

−1
K−1

)⊤
. It is immediate

to see the equivalence between classifiers H(x) defined over L and classifiers
f(x) defined over Y :

H(x) = l ∈ L ⇔ f(x) = yl ∈ Y. (1)

This codification was first introduced by Lee, Lin and Wahba [18] for109

extending the binary SVM to the multi-class case. More recently Zou, Zhu110

and Hastie [10] generalize the concept of binary margin to the multi-class111

case using a related vectorial codification in which a K-vector y is said to112

be a margin vector if it satisfies the sum-to-zero condition, y⊤1 = 0, where113

1 denotes a vector of ones. This sum-to-zero condition reflects the implicit114

nature of the response in classification problems in which each yi takes one115

and only one value from a set of labels.116

The SAMME algorithm generalizes the binary AdaBoost to the multi-
class case [11]. It also uses Lee, Lin and Wahba’s vector codification and
a multi-class exponential loss that is minimized using a stage-wise additive
gradient descent approach. The exponential loss is the same as the origi-
nal binary exponential loss function and the binary margin, z = lG(x), is
replaced by the multi-class vectorial margin, defined with a scalar product
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z = y⊤f(x); i.e.

L (y, f(x)) = exp

(

−
y⊤f(x)

K

)

. (2)

Further, it can be proved that the population minimizer of this exponential
loss, argminf(x)Ey|X=x [L (y, f(x))], corresponds to the multi-class Bayes
optimal classification rule [11]

argmax
k

fk(x) = argmax
k

Prob (Y = yk|x) .

Other loss functions, such as the logit or L2, share this property and may117

also be used for building boosting algorithms.118

In the proposal that we introduce in the next section we generalize the119

class-label representation here described so that our boosting algorithm can120

model the asymmetries arising in the binary classifications performed by121

the weak-learners. Although other loss functions could have been used, we122

will use the exponential loss to maintain the similarity with the original123

AdaBoost algorithm.124

3. Multi-class margin expansion125

The use of margin vectors for coding data labels and the labels estimated126

by a classifier introduces a natural generalization of binary classification, in127

such a way that new margin-based algorithms can be derived. In this section128

we introduce a new multi-class margin expansion. Similarly to [18, 10, 11] we129

use sum-to-zero margin vectors to represent multi-class membership. How-130

ever, in our proposal, data labels and those estimated by a classifier will131

not be defined on the same set of vectors. This will produce, for each iter-132

ation of the algorithm, different margin values for each sample, depending133

on the number of classes separated by the weak-learner. This is related to134

the asymmetry produced in the classification when the number of classes135

separated by a weak-learner is different on each side and to the “difficulty”136

or information content of that classification.137

The essence of the margin approach resides in maintaining negative/posi-138

tive values of the margin when a classifier has respectively a failure/success.139

That is, if y, f(x) ∈ Y the margin z = y⊤f(x) satisfies: z > 0 ⇔ y = f(x)140

and z < 0 ⇔ y 6= f(x). We extend the set Y by allowing that each yl may141

also take a negative value, that can be interpreted as a fair vote for any label142

but the l-th. This vector encodes the uncertainty in the classifier response,143

by evenly dividing the evidence among all classes, but the l-th. It provides144

the smallest amount of information about the classification of an instance;145
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i.e. a negative classification, the instance does not belong to class l but to146

any other. Our goal is to build a boosting algorithm that combines both147

positive and negative weak responses into a strong decision.148

We introduce new kinds of margin vectors through fixing a group of
s-labels, S ∈ P(L), and defining yS in the following way:

yS =
(

yS1 , . . . , y
S
K

)

with ySi =

{

1
s if i ∈ S
−1
K−s if i /∈ S

(3)

It is immediate to see that any yS is a margin vector in the sum-to-zero
sense [18, 10]. In addition, if Sc is the complementary set of S ∈ P(L),
then ySc

= −yS . Let Ŷ be the whole set of vectors obtained in this fashion.
We want to use Ŷ as arrival set, that is: f : X → Ŷ , but under a binary
perspective. The difference with respect to other approaches using similar
codification [18, 10, 11] is that the correspondence defined in (1) is broken.
In particular, weak-learners will take values in

{

yS ,−yS
}

rather than the

whole set Ŷ . The combination of answers obtained by the boosting algo-
rithm will provide complete information over Ŷ . So now the correspondence
for each weak-learner is binary

HS(x) = ±1 ⇔ fS(x) = ±yS , (4)

where HS : X → {+1,−1} is a classifier that recognizes the presence (+1)149

or absence (-1) of a group of labels S in the data.150

We propose a multi-class margin for evaluating the answer given by
fS(x). Data labels always belong to Y but predicted ones, fS(x), belong
to Ŷ . In consequence, depending on s = |S|, we have four possible margin
values

z = y⊤fS(x) =

{

± K
s(K−1) if data label belongs to S

± K
(K−s)(K−1) in another case

(5)

where the sign is positive/negative if the partial classification is correct/in-151

correct. Derivations of the above expressions are in the Appendix.152

We use an exponential loss to evaluate the margins in (5)

L
(

y, fS(x)
)

= exp

(

−y⊤fS(x)

K

)

. (6)

In consequence, the above vectorial codification of class labels with the
exponential loss will produce different degrees of punishes and rewards de-
pending on the number of classes separated by the weak-learner. Suppose
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that we fix a set of classes S and an associated weak-learner that separates S
from the rest, fS(x). We may also assume that |S| ≤ K/2, since if |S| > K/2
we can choose S′ = Sc and in this case |S′| ≤ K/2. The failure or success of
fS(x) in classifying an instance x with label l ∈ S will have a larger margin
than when classifying an instance with label l ∈ Sc. The margins in (5)
provide the following rewards and punishes when used in conjunction with
the exponential loss (6)

L
(

y, fS(x)
)

=







exp
(

∓1
s(K−1)

)

if y ∈ S

exp
(

∓1
(K−s)(K−1)

)

if not.
(7)

In dealing with the class imbalance problem, the losses produced in (7)153

reflect the fact that the importance of instances in S is higher than those in154

Sc, since S is the smaller set. Hence, the cost of miss-classifying an instance155

in S outweighs that of classifying one in Sc [16]. This fact may also be156

intuitively interpreted in terms of the “difficulty” or amount of information157

provided by a classification. Classifying a sample in S provides more infor-158

mation, or, following the usual intuition behind boosting, is more “difficult”,159

than the classification of an instance in Sc, since Sc is larger than S. The160

smaller the set S the more “difficult” or informative will be the result of the161

classification of an instance in it.162

We can further illustrate this idea with an example. Suppose that we
work on a classification problem withK = 5 classes. We may select S1 = {1}
and S2 = {1, 2} as two possible sets of labels to be learned by our weak-
learners. Samples in S1 should be the more important than those in SC

1 or
in S2, since S1 has the smallest class cardinality. Similarly, in general, it
is easier to recognize data in S2 than in S1, since the latter is smaller; i.e.
classifying a sample in S1 provides more information than in S2. Encoding
labels with vectors from Y we will have the following margin values and
losses

z = y⊤fS1(x) =

{

±5/4
±5/16

⇒ L(y, fS1) =

{

e±1/4 = {0.77, 1.28} y ∈ S1

e±1/16 = {0.93, 1.06} y ∈ Sc
1

z = y⊤fS2(x) =

{

±5/8
±5/12

⇒ L(y, fS2) =

{

e±1/8 = {0.88, 1.13} y ∈ S2

e±1/12 = {0.92, 1.08} y ∈ Sc
2

Everything we say about instances in S1 will be the most rewarded or163

penalized in the problem, since S1 is the smallest class set. Set S2 is the164
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Figure 1: Values of the Exponential Loss Function over margins, z, for a classification
problem with 5-classes. Possible margin values are obtained taking into account the
expression (7) for s = 1 and s = 2.

second smallest, in consequence classification in that set will produce the165

second largest rewards and penalties. Similarly, we “say more” excluding166

an instance from S2 = {1, 2} than from S1 = {1}, since Sc
2 is smaller than167

Sc
1. In consequence, rewards and penalties for samples classified in Sc

2 will168

be slightly larger than those in Sc
1. In Fig. 1 we display the loss values for169

the separators associated to the sets S1 and S2.170

4. Partially Informative Boosting171

In this section we present the structure of PIBoost whose pseudo-code172

we show in Algorithm 2. At each Boosting iteration we fit as many weak-173

learners as groups of labels, G ⊂ P(L), are considered. In our experiments174

we have chosen two types of subsets {all single labels} and {all single labels175

and all pairs of labels}. The aim of each weak-learner is to separate its176

associated labels from the rest and persevere in this task iteration after177

iteration. That is why we call them separators. A weight vector WS is178

associated to the separator of set S.179

For each set S ∈ G PIBoost builds a stage-wise additive model [20] of180

the form fm(x) = fm−1(x) + βmgm(x) (where super-index S is omitted for181

ease of notation). In step 2 of the algorithm we estimate constant β and182
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Algorithm 2 : PIBoost

1: Initialize weight vectors ωS
i = 1/N ; with i = 1, . . . , N and S ∈ G ⊂

P(L).
2: For m = 1 until the number of iterations M and for each S ∈ G:

a) Fit a binary classifier TS
m(x) over training data with respect to its

corresponding ωS . Translate TS
m(x) into gSm : X → Ŷ .

b) Compute 2 types of errors associated with TS
m(x)

ǫ1S,m =
∑

li∈S

ωS
i I
(

li /∈ TS
m(xi)

)

ǫ2S,m =
∑

li /∈S

ωS
i I
(

li /∈ TS
m(xi)

)

c) Calculate RS
m, the only real positive root of the polynomial PS

m(x)
defined according to (8).

d) Calculate βS
m = s(K − s)(K − 1) log

(

RS
m

)

e) Update weight vectors as follows:

• If li ∈ S then ωS
i = ωS

i ·
(

RS
m

)±(K−s)

• If li /∈ S then ωS
i = ωS

i ·
(

RS
m

)±s
,

where the sign depends on whether TS
m has a failure/success on xi.

f) Re-normalize weight vectors.

3: Output Final Classifier: C(x) = argmaxk Fk(x),
where F(x) = (F1(x), ..., FK(x)) =

∑M
m=1

∑

S∈G βS
mgSm(x).
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function gm(x) for each label and iteration. The following Lemma solves183

the problem of finding those parameters.184

Lemma 1. Given an additive model fm(x) = fm−1(x)+βmgm(x) associated
to a set of labels, S ∈ G, the solution to

(βm, gm(x)) = arg min
β,g(x)

N
∑

i=1

exp

(

−y⊤
i

(

fm−1(xi) + βg(xi)
)

K

)

is185

• gm = argming(x)
∑N

i=1 ωi · I
(

y⊤
i g(xi) < 0

)

186

• βm = s(K − s)(K − 1) logR,187

where R is the only real positive root of the polynomial

Pm(x) = ǫ1(K−s)x2(K−s)+sǫ2xK−s(A2−ǫ2)x
(K−2s)−(K−s)(A1−ǫ1) (8)

where A1 =
∑

li∈S
ωi, A2 =

∑

li /∈S
ωi, i.e. A1 + A2 = 1, Wm−1 = {ωi}188

the weight vector of iteration m-1, and ǫ1 =
∑

li∈S
ωiI(y

⊤
i g(xi) < 0) ,189

ǫ2 =
∑

li /∈S
ωiI(y

⊤
i g(xi) < 0).190

The demonstration of this result is in the Appendix.191

This lemma justifies steps 2:b)1, 2:c) and 2:d) in Algorithm 2. In case
of y ∈ S, the update rule 2:e) follows from

ωS
i = ωS

i · exp

(

−1

K
y⊤
i βf

S(xi)

)

= ωS
i · exp

(

−1

K
s(K − s)(K − 1) log

(

RS
m

) ±K

s(K − 1)

)

= ωS
i · exp

(

∓(K − s) log
(

RS
m

))

= ωS
i ·
(

RS
m

)∓(K−s)

The case y /∈ S provides an analogous expression.192

The shape of the final classifier is easy and intuitive to interpret. The193

vectorial function built during the process collects in each k-coordinate in-194

formation that can be understood as a degree of confidence for classifying195

sample x into class k. The classification rule assigns the label with highest196

1In expression li /∈ TS
m(x), the set TS

m(x) must be understood as
{

TS
m(x) = +1

}

≡ S

and
{

TS
m(x) = −1

}

≡ SC .
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Figure 2: Margin vectors for a problem with three classes. Left figure presents the set of
vectors Y . Right plot presents the set Ŷ .

value in its coordinate. This criterion has a geometrical interpretation pro-197

vided by the codification of labels as K-dimensional vectors. Since the set198

Ŷ contains margin vectors, the process of selecting the most probable one is199

carried out on the orthogonal hyperplane of 1 = (1, . . . , 1)⊤ (see Fig. 2). So,200

we build our decision on a subspace of RK free of total indifference about201

labels. It means, that the final vector F(x) built during the process will202

usually present a dominant coordinate that represents the selected label.203

Ties between labels will only appear in degenerate cases. The plot on the204

right in Fig. 2 shows the set of pairs of vectors Ŷ defined by our extension,205

whereas on the left are shown the set of vectors Y used in [18, 11]. Although206

the spanned gray hyperplane is the same, we exploit every binary answer207

in such a way that the negation of a class is directly translated into a new208

vector that provides positive evidence for the complementary set of classes209

in the final composition, F(x). The inner product of class labels y ∈ Y210

and classifier predictions, f(x) ∈ Ŷ , y⊤f(x) produces a set of asymmetric211

margin values in such a way that, as described in section 3, all successes212

and failures do not have the same importance. Problems with four or more213

classes are more difficult to be shown graphically but allow richer sets of214

margin vectors.215

The second key idea in PIBoost is that we can build a better classi-216

fier when collecting information from positive and negative classifications217

in Ŷ than when using only the positive classifications in the set Y . Each218

weak-learner, or separator, gS , acts as a partial expert of the problem that219

provides us with a clue about what is the label of x. Note here that when220
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a weak-learner classifies x as belonging to a set of classes, the value of its221

associated step β, that depends on the success rate of the weak-learner, is222

evenly distributed among the classes in the set. In the same way, the bet223

will be used to evenly reduce the confidence on coordinates corresponding224

to non-selected classes. This balance inside selected and discarded classes225

is reflected in a margin value with a sensible multi-class interpretation. In226

other words, every answer obtained by a separator is directly translated into227

multi-class information in a fair way.228

Reasoning in this way is a pattern of common sense. In fact we apply this229

philosophy in our everyday life when we try to guess something discarding230

possibilities. For instance, suppose that a boy knows that his favorite pen231

has been stolen in his classroom. He will ask each classmate what he knows232

about the issue. Perhaps doing this he will collect a pool of useful answers of233

the kind: “I think it was Jimmy”, “I am sure it was not a girl”, “I just know234

that it was not me nor Victoria”, “I would suspect of Martin and his group235

of friends”, etc. Combining all that information our protagonist should have236

one suspect. It’s easy to find similarities between such a situation and the237

structure of PIBoost: the answer of each friend can be seen as a weak-learner238

TS
t , the level of credibility (or trust) associated to each is our βt, while the239

iteration value t can be thought as a measure of time in the relationship240

with the classmates.241

4.1. AdaBoost as a special case of PIBoost242

At this point we can verify that PIBoost applied to a two-class problem243

is equivalent to AdaBoost. In this case we only need to fit one classifier at244

each iteration2. Thus there will be only one weight vector to be updated245

and only one group of β constants.246

It is also easy to match the expression of parameter β computed in
PIBoost with the value of α computed in AdaBoost just by realizing that,
fixed an iteration whose index we omit, the polynomial in step 2 - c) is

P (x) = (ǫ1 + ǫ2)x2 − (A1 − ǫ1 +A2 − ǫ2) = ǫ · x2 − (1− ǫ) .

Solving this expression we get R =
(

1−ǫ
ǫ

)1/2
, thus β = 1

2 log
(

1−ǫ
ǫ

)

. What247

indeed is the value of α in AdaBoost.248

Finally, it is immediate to see that the final classifiers are equivalent.249

If we transform AdaBoost’s labels, L = {+1,−1}, into PIBoost’s, L′ =250

2Separating the first class from the second is equivalent to separating the second from
the first and, of course, there are no more possibilities.
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{1, 2}, we get that H(x) = sign
(

∑M
m=1 αmhm(x)

)

turns into C(x) =251

argmaxk Fk(x), where F (x) = (F1(x), F2(x)) =
∑M

m=1 βmfm(x).252

5. Experiments253

Our goal in this section is to evaluate and compare the performance254

of PIBoost. We have selected fourteen data-sets from the UCI repository:255

CarEvaluation, Chess, CNAE9, Isolet,Multifeatures, Nursery,OptDigits, Page-256

Blocks, PenDigits, SatImage, Segmentation, Vehicle, Vowel and WaveForm.257

They have different numbers of input variables (6 to 856), classes (3 to 26)258

and instances (846 to 28.056), and represent a wide spectrum of types of259

problems. Although some data-sets have separate training and test sets,260

we use both of them together, so the performance for each algorithm can261

be evaluated using cross-validation. Table 1 shows a summary of the main262

features of the databases.263

Data-set Variables Classes Instances

CarEvaluation 6 4 1728

Chess 6 18 28056

CNAE9 856 9 1080

Isolet 617 26 7797

Multifeatures 649 10 2000

Nursery 8 5 12960

OptDigits 64 10 5620

PageBlocks 10 5 5473

PenDigits 16 10 10992

SatImage 36 7 6435

Segmentation 19 7 2310

Vehicle 18 4 846

Vowel 10 11 990

Waveform 21 3 5000

Table 1: Summary of selected UCI data-sets

For comparison purposes we have selected three well-known multi-class264

Boosting algorithms. AdaBoost.MH [12] is perhaps the most prominent ex-265

ample of multi-class classifier with binary weak-learners. Similarly, SAMME [11]266

is a well-known representative of multi-class algorithms with multi-class267
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weak-learners. Finally, multi-class GentleBoost [10] is an accurate method268

that treats labels separately at each iteration.269

Selecting a weak-learner that provides a fair comparison among different270

Boosting algorithms is important at this point. SAMME requires multi-271

class weak-learners while, on the other hand, AdaBoost.MH and PIBoost272

can use even simple stump-like classifiers. Besides, multi-class GentleBoost273

requires the use of regression over continuous variables for computing its274

weak-learners. We chose classification trees as weak-learners, since they can275

be used in the first three algorithms, and regression trees for the last one.276

For classification trees the following growing schedule was adopted. Each277

tree grows splitting impure nodes that present more than M/K-instances278

(where M is the number of samples selected for fitting the tree), so this value279

is taken as a lower bound for splitting. We found good results for the sample280

size parameter when M < 0.4 · N , where N is the training data size. In281

particular we fix M = 0.1 ·N for all data-sets. In the case of regression trees282

the growing pattern is similar but the bound of M/K-instances for splitting283

produced poor results. Here more complex trees achieve better performance.284

In particular when the minimum bound for splitting is M/2K-instances we285

got lower-enough error rates. A pruning process is carried out too in both286

types of trees.287

We have experimented with two variants of PIBoost. The first one takes288

G = {All single labels} ⊂ P(L) as group of sets to separate while the second289

one, more complex, takes G′ = {All single labels} ∪ {All pairs of labels}.290

We must emphasize the importance of selecting a good group of separators291

in achieving the best performance. Depending on the number of classes,292

selecting an appropriate set G is a problem in itself. Knowledge of the293

dependencies among labels set will certainly help in designing a good set of294

separators. This is a problem that we do not address in this paper.295

For the experiments we have fixed a number of iterations that depends296

on the algorithm and the number of labels of each data-set. Since the five297

algorithms considered in this section fit a different number of weak-learners298

at each iteration, we have selected the number of iterations of each algorithm299

so that all experiments have the same number of weak-learners (see Table 2).300

Remember that, when a data-set presents K-labels, PIBoost(2) fits
(

K
2

)

+301

K separators per iteration while PIBoost(1) and GentleBoost fit only K.302

Besides SAMME and AdaBoost.MH fit one weak-learner per iteration. In303

Fig. 3 we plot the performance of all five algorithms.304

The performance of a classifier corresponds to that achieved at the last it-305

eration, combining all learned weak-learners. We evaluate the performance306

of the algorithms using 5-fold cross-validation. Table 3 shows these val-307
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Data-set GentleBoost AdaBoost.MH SAMME PIBoost(1) PIBoost(2) #WL

CarEvaluation (4) 70 280 280 70 40 [7] 280
Chess (18) 95 1710 1710 95 10 [171] 1710
CNAE9 (9) 100 900 900 100 20 [45] 900
Isolet (26) 135 3510 3510 135 10 [351] 3510
Multifeatures (10) 110 1100 1100 110 20 [55] 1100
Nursery (5) 120 600 600 120 40 [15] 600
OptDigits (10) 110 1100 1100 110 20 [55] 1100
PageBlocks (5) 120 600 600 120 40 [15] 600
PenDigits (10) 110 1100 1100 110 20 [55] 1100
SatImage (7) 80 560 560 80 20 [28] 560
Segmentation (7) 80 560 560 80 20 [28] 560
Vehicle (4) 70 280 280 70 40 [7] 280
Vowel (11) 120 1320 1320 120 20 [66] 1320
Waveform (3) 40 120 120 40 40 [3] 120

Table 2: Number of iterations considered for each Boosting algorithm. The first column
displays the database name with the number of classes in parenthesis. Columns two to
six display the number of iterations of each algorithm. For PIBoost(2) the number of
separators per iteration appears inside brackets. The last column explicitly displays the
number of weak-learners used for each database.

ues and their standard deviations. As can be seen, PIBoost (with its two308

variants) outperforms the rest of methods in many data-sets. Once the al-309

gorithms have been ranked by accuracy we used the Friedman test to asses310

whether the performance differences are statistically significant [22]. As was311

expected the null hypothesis (all algorithms have the same quality) is re-312

jected with a p-value < 0.01. A post-hoc analysis was carried out too. We313

used the Nemenyi test to group the algorithms that present insignificant314

difference [22]. Figure 4 shows the result of the test for both α = 0.05315

and α = 0.1 significance level. Summarizing, PIBoost(1) can be consid-316

ered as good as PIBoost(2) and also as good as the rest of algorithms, but317

PIBoost(2) is significantly better than the latter. In addition, we used the318

Wilcoxon matched-pairs signed-ranks test to asses the statistical significance319

of the performance comparisons between pairs of algorithms [22]. Table 4320

presents the p-values obtained after comparing PIBoost(1) and PIBoost(2)321

with the others. Again, it is clear that the latter is significantly better than322

the rest.323

Additionally, we have also performed one more experiment with the324

Amazon database to asses the performance of PIBoost in a problem with325

a very high dimensional space and with a large number of classes. This326

database also belongs to the UCI repository. It has 1.500 sample instances327
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Figure 3: Plots comparing the performances of Boosting algorithms. In the vertical axis
we display the error rate. In the horizontal axis we display the number of weak-learners
fitted for each algorithm.

with 10.000 features grouped in 50 classes. With this database we followed328

the same experimental design as with the other databases, but only used329

the PIBoost(1) algorithm. In Figure 5 we plot the evolution in the per-330

formance of each algorithm as the number of weak learners increases. At331

the last iteration, PIBoost(1) had respectively an error rate and a standard332

deviation of 0.4213 and (±374 × 10−4), whereas GentleBoost had 0.5107333
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Figure 4: Diagram of the Nemenyi test. The average rank for each method is marked
on the segment. We show critical differences for both α = 0.05 and α = 0.1 significance
level at the top. We group with thick blue line algorithms with no significantly different
performance.

Data-set GentleBoost AdaBoost.MH SAMME PIBoost(1) PIBoost(2)

CarEvaluation 0.0852 (±121) 0.0713 (±168) 0.0487 (±111) 0.0325 (±74) 0.0377 (±59)

Chess 0.5136 (±61) 0.4240 (±34) 0.5576 (±63) 0.5260 (±118) 0.5187 (±74)

CNAE9 0.0870 (±239) 0.1028 (±184) 0.1111 (±77) 0.1472 (±193) 0.0824 (±171)

Isolet 0.1507 (±94) 0.5433 (±179) 0.0812 (±185) 0.1211 (±253) 0.0559 (±55)

Multifeatures 0.0460 (±128) 0.3670 (±822) 0.0135 (±44) 0.0340 (±96) 0.0145 (±82)

Nursery 0.1216 (±60) 0.0203 (±32) 0.0482 (±58) 0.0192 (±29) 0.0313 (±62)

OptDigits 0.0756 (±74) 0.0432 (±59) 0.0365 (±55) 0.0400 (±13) 0.0240 (±41)

PageBlocks 0.0291 (±52) 0.0276 (±46) 0.0386 (±87) 0.0364 (±47) 0.0302 (±50)

PenDigits 0.0221 (±11) 0.0113 (±29) 0.0484 (±62) 0.0358 (±40) 0.0192 (±25)

SatImage 0.1294 (±32) 0.1318 (±51) 0.3691 (±120) 0.1113 (±62) 0.0949 (±53)

Segmentation 0.0494 (±64) 0.0407 (±88) 0.0238 (±55) 0.0208 (±52) 0.0177 (±61)

Vehicle 0.2710 (±403) 0.3976 (±297) 0.2320 (±221) 0.2509 (±305) 0.2355 (±258)

Vowel 0.2818 (±322) 0.3525 (±324) 0.0667 (±114) 0.0646 (±183) 0.0606 (±160)

Waveform 0.1618 (±75) 0.1810 (±72) 0.1710 (±109) 0.1532 (±44) 0.1532 (±44)

Table 3: Error rates of GentleBoost, AdaBoost.MH, SAMME, PIBoost(1) and PIBoost(2)
algorithms for each data-set in table 1. Standard deviations appear inside parentheses in
10−4 scale. Bold values represent the best result achieved for each database.

and (±337 × 10−4), SAMME 0.6267 and (±215 × 10−4) and, finally, Ad-334

aBoost.MH 0.7908 and (±118× 10−4).335

The experimental results confirm our initial intuition that by increasing336

the range of margin values and considering the asymmetries in the class337
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GentleBoost AdaBoost.MH SAMME PIBoost(1)

PIBoost(2) 0.0012 0.0203 0.0006 0.0081
PIBoost(1) 0.0580 0.1353 0.7148

Table 4: P -values corresponding to Wilcoxon matched-pairs signed-ranks test.
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Figure 5: Plot comparing the performances of Boosting algorithms for the Amazon
database. In the vertical axis we display the error rate. In the horizontal axis we display
the number of weak-learners fitted for each algorithm.

distribution generated by the weak-learners we can significantly improve the338

performance of boosting algorithms. This is particularly evident in problems339

with a large number of classes and few training instances or those in a high340

dimensional space.341

6. Related Work342

In this section we relate our work with previous multi-class boosting343

algorithms. Recent results have addressed the problem of cost-sensitive or344

asymmetric boosting in the binary case [16, 23, 24]. In subsection 6.1 we345

will review these works and relate our multi-class solution to those results.346

Also, our approach like [13, 12, 14, 15], uses binary weak-learners to sepa-347

rate groups of classes. We will review multi-class boosting approaches with348

binary weak-learners in subsection 6.2. Moreover, our multi-class labels349

and weak-learner responses use a vectorial codification with a margin vec-350

tor interpretation, like [18, 10, 11]. In subsection 6.3 we review boosting351

algorithms based on vectorial encodings and margin vectors.352
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6.1. Asymmetric treatment of partial information353

The problem of learning from imbalanced data is concerned with the354

design of learning algorithms in the presence of underrepresented data and355

severe class distribution skews [17]. In the context of boosting, solutions to356

the class imbalance problem can be categorized as data level and algorithm357

level approaches. The goal at the data level is to re-weight or re-sample358

the data space so as to re-balance the class distribution. Approaches based359

on random oversampling [25] as well as random [26] and evolutionary [27]360

undersampling have been proposed. Alternatively, AdaBoost may also be-361

come an asymmetric boosting algorithm by changing only the initial data362

weights [24]. At the algorithm level, solutions try to adapt existing ap-363

proaches to bias towards the small class [16] or to derive new cost-sensitive364

losses that produce asymmetric boosting algorithms [16, 23].365

Our codification of class labels and classifier responses produces different366

margin values. This asymmetry in evaluating successes and failures in the367

classification may also be interpreted as a form of asymmetric boosting [16,368

23]. As such it is related to the Cost-Sensitive AdaBoost in [23].369

Using the cost matrix defined in Table 5, we can relate the PIBoost al-
gorithm with the Cost-Sensitive AdaBoost [23]. If we denote b ≡ ǫ1S , d ≡
ǫ2S , T+ ≡ A1 , T− ≡ A2 then the polynomial (8), PS(x), solved at each
PIBoost iteration to compute the optimal step, βm, along the direction of
largest descent gm(x) is equivalent to the following cosh(x)-depending ex-
pression used in the Cost-Sensitive AdaBoost to estimate the same param-
eter [23]

2C1 · b · cosh (C1α) + 2C2 · d · cosh (C2α) = C1 · T+ · e
−C1α +C2 · T− · e

−C2α,

where the costs {C1, C2} are the non-zero values in Table 5.370

Real\ Predicted S Sc

S 0 1
s(K−1)

Sc 1
(K−1)(K−s) 0

Table 5: Cost Matrix associated to a PIBoost’s separator of a set S with s = |S| classes.

In consequence, PIBoost is a boosting algorithm that combines a set of371

cost-sensitive binary weak-learners whose costs depend on the number of372

classes separated by each weak-learner.373

6.2. Boosting algorithms based on binary weak-learners374

A widely used strategy in machine learning for solving a multi-class375

classification problem with a binary classifier is to employ the one-vs-all376
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method, that separates each class from the rest [28]. In the boosting lit-377

erature, Shapire and Singer’s AdaBoost.MH algorithm [12] is a prominent378

example of this approach. It creates a set of binary problems for each sample379

and each possible label. This algorithm was initially conceived for solving380

multi-label problems. However, it has been extensively used for solving the381

multi-class problem, in which class labels are mutually exclusive. As shown382

in [18] for the SVM case, this approach could perform poorly if there is no383

dominating class.384

Following Dietterich and Bakiri’s error-correcting-output-codes (ECOC)385

strategy [29], an alternative approach is to reduce the multi-class problem386

to multiple R-binary ones using a codeword to represent each class label.387

So for the r-th task a weak-learner Hr : X → {+1,−1} is generated. The388

presence/absence of a group of labels over an instance is coded by a column389

vector belonging to {+1,−1}K or {1, 0}K , in both cases +1 indicates pres-390

ence of the labels selected by Hr(x). Based on this idea several Boosting391

algorithms have been proposed, AdaBoost.OC [13], AdaBoost.MO [12] and392

AdaBoost.ECC [14]. The ECOC approach has been succesfully applied to393

a wide range of applications, such as face verification [30], facial expression394

recognition [31] or feature extraction [32].395

The loss function applied for updating weights in AdaBoost.OC uses396

a relaxed error measurement termed pseudo-loss. AdaBoost.MO and Ad-397

aBoost.ECC use an exponential loss function with non-vectorial arguments.398

In section 3 we have highlighted the importance of using a pure multi-class399

loss function for achieving different margin values, hence penalizing binary400

failures into a real multi-class context. With our particular treatment for401

binary sub-problems we extend AdaBoost in a more natural way, because402

PIBoost can be seen as a group of several binary AdaBoost well tied via the403

multi-class exponential loss function and where every partial answer is well404

suited for the original multi-class problem.405

Finally, the resulting schedule of PIBoost is similar to the {±1}-matrix406

of ECOC algorithms, except for the presence of fractions. At each itera-407

tion of PIBoost there is a block of |G|-response vectors that, grouped as408

columns, form a K × |G|-matrix similar to |G|-weak learners of any ECOC-409

based algorithm. However, in our approach, fractions let us make an even410

distribution of evidence among the classes in a set, whereas in the ECOC411

philosophy every binary sub-problem has the same importance for the final412

count. Moreover, the binary approaches reported so far do not consider the413

possible data imbalances produced by the number of classes falling on each414

side of the binary weak-learners.415
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6.3. Boosting algorithms based on vectorial encoding416

An alternative way of extending binary boosting algorithms to the multi-417

class case is by encoding class membership in a set of vector-valued class418

codes and using an appropriate loss function. This idea of introducing a419

vectorial codification for extending a binary classifier to the multi-class case420

was first introduced for SVMs by Lee, Lin and Wahba [18]. Later, Zou, Zhu421

and Hastie introduced a theoretical basis for margin vectors and Fisher-422

consistent loss functions [10]. With their theory we can build multi-class423

boosting methods that handle multi-class weak-learners by coding labels as424

vectors and generalizing the concept of binary margin to multi-class prob-425

lems in the following way. Given a classification function expressed in terms426

of margin vectors f(x) = (f1(x), . . . , fK(x)), with
∑K

j=1 fj(x) = 0, if the real427

label of x is l the multi-class margin is the coordinate fl(x). Hence, a bi-428

nary loss functions may be used for evaluating a multi-class decision. Based429

on this generalization, they derived multi-class generalizations of Gentle-430

Boost [10] and a new multi-class boosting algorithm minimizing the logit431

risk, AdaBoost.ML [10].432

Almost parallel to this work Zhu, Zhou, Rosset and Hastie proposed
SAMME (Stage-wise Additive Modeling using a Multi-class Exponential loss
function) algorithm [11]. As described in section 2, this algorithm uses a
multi-class exponential loss for evaluating classifications encoded with mar-
gin vectors when real labels are encoded likewise. The resulting algorithm
only differs from AdaBoost (see Algorithm 1 and Algorithm 3) in step 5:

that now is αm = log ((1− Errm)/Errm) + log(K − 1) and step 9: that
becomes

H(x) = argmaxk

M
∑

m=1

αmI (Tm(x) = k) .

The GAMBLE (Gentle Adaptive Multi-class Boosting Learning) algorithm433

also uses a multi-class vectorial codification and exponential loss function434

with the same type of weak-learners and structure of GentleBoost. The435

resulting multi-class Boosting schedule is merged with an active learning436

methodology to scale up to large data-sets [19].437

Multi-class weak-learners have more parameters than simple binary clas-438

sifiers and, consequently, they are more difficult to train and have a higher439

risk of over-fitting. For these reasons, most popular multi-class boosting440

algorithms are based on binary weak-learners.441

In our approach, we use a vectorial codification with a sum-to-zero mar-442

gin vector, like [18, 19, 10, 11] to represent multi-class data labels. However,443

our binary weak-learners code their answers in an extended set of vector444
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Algorithm 3 : SAMME

1: Initialize the Weight VectorW with uniform distribution ωi = 1/N , i =
1, . . . , N .

2: for m = 1 to M do
3: Fit a multi-class classifier Tm(x) to the training data using weights

W.
4: Compute weighted error: Errm =

∑N
i=1 ωiI (Tm(xi) 6= yi).

5: Compute αm = log ((1− Errm)/Errm) + log(K − 1).
6: Update weight vector ωi ← ωi ·exp (αmI (Tm(xi) 6= yi)) , i = 1, . . . , N .
7: Re-normalize W.
8: end for
9: Output Final Classifier: H(x) = argmaxk

∑M
m=1 αmI (Tm(x) = k)

codes that model the uncertainty in the classifier response, producing a445

larger set of asymmetric margin values that depend on the number of classes446

separated by each weak-learner.447

7. Conclusions448

We have proposed a new multi-class boosting algorithm called PIBoost,449

that is a generalization of existing binary multi-class boosting algorithms450

when we consider the asymmetries arising in the class distributions gener-451

ated by the binarization process.452

The main contribution of our framework is the use of binary classifiers453

whose response is coded in a multi-class vector and evaluated under an ex-454

ponential loss function. Data labels and classifier responses are coded in455

different vector domains in such a way that they produce a set of asym-456

metric margin values that depend on the distribution of classes separated457

by the weak-learner. In this way the boosting algorithm properly addresses458

possible class imbalances appearing in the problem binarization. The range459

of rewards and punishments provided by this multi-class loss function is also460

related to the amount of information provided by each weak-learner. The461

most informative weak-learners are those that classify samples in the small-462

est class set and, consequently, their sample weight rewards and penalties463

are the largest. The ensemble response is the weighted sum of the weak-464

learner vector responses. Here the codification produces a fair distribution465

of the vote or evidence among the classes in the group. The resulting algo-466

rithm maintains the essence of AdaBoost, that, in fact, is a special case of467

PIBoost when the number of classes is two. Furthermore, the way it trans-468
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lates partial information about the problem into multi-class knowledge let469

us think of our method as the most canonical extension of AdaBoost using470

binary information.471

The experiments performed confirm that PIBoost significantly improves472

the performance of other well known multi-class classification algorithms.473

However, we do not claim that PIBoost is the best multi-class boosting al-474

gorithm in the literature. Rather, we claim that the multi-class margin ex-475

pansion introduced in the paper improves existing binary multi-class classifi-476

cation approaches and open new research venues in margin-based multi-class477

classification. We plan to extend this result to multi-label, multi-dimensional478

and multi-class cost-sensitive classifiers.479

Appendix480

Proof of expression (5)481

Suppose, without loss of generality, that we work with an instance x
that belongs to the first class and we try to separate the set S of the first
s-labels from the rest using fS(x). Suppose also that there is success when
classifying with that separator over the instance. In that case the value of
the margin will be

y⊤fS(x) =

(

1,
−1

K − 1
, ...,

−1

K − 1

)(

1

s
, ...,

1

s
,
−1

K − s
, ...,

−1

K − s

)⊤

=
1

s
−

s− 1

s(K − 1)
+

(K − s)

(K − 1)(K − s)
=

K

s(K − 1)
.

If the separator is wrong then fS(x) would have opposite sign and there-482

fore the result.483

Besides, suppose now that the real label of the instance is the same but
now we separate the last s-labels from the rest. Suppose also that this time
fS erroneously classifies the instance as belonging to those last labels. The
value of the margin will be

y⊤fS(x) =

(

1,
−1

K − 1
, ...,

−1

K − 1

)(

−1

K − s
, ...,

−1

K − s
,
1

s
, ...,

1

s

)⊤

=
−1

K − s
+

(K − s− 1)

(K − 1)(K − s)
−

s

(K − 1)s
=

−K

(K − 1)(K − s)
.

Again, the sign of the result would be opposite if fS excludes x from the484

first label group.485
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Demonstration of the Lemma486

Let us fix a subset of s labels, s = |S|, and suppose that we have fitted487

a separator fm(x) (whose S-index we omit) as an additive model fm+1(x) =488

fm(x)+βg(x), in the m-th step. We fix a β > 0 and rewriting the expression489

to look for the best g(x):490

N
∑

i=1

exp

(

−1

K
· y⊤

i (fm(xi) + βg(xi))

)

=

=
N
∑

i=1

ωi · exp

(

−1

K
· β · y⊤

i g(xi)

)

=
∑

li∈S

ωi · exp

(

∓β

s(K − 1)

)

+
∑

li /∈S

ωi · exp

(

∓β

(K − s)(K − 1)

)

=





∑

li∈S

ωi



 exp

(

−β

s(K − 1)

)

+

[

exp

(

β

s(K − 1)

)

− exp

(

−β

s(K − 1)

)]

·

·
∑

li∈S

ωi · I(y
⊤
i g(xi) < 0) +





∑

li /∈S

ωi



 exp

(

−β

(K − s)(K − 1)

)

+

+

[

exp

(

β

(K − s)(K − 1)

)

− exp

(

−β

(K − s)(K − 1)

)]

∑

li /∈S

ωi · I(y
⊤
i g(xi) < 0).

The last expression is a sum of four terms. As can be seen, the first and
third are constants while the second and fourth are the ones that depend on
g(x). The values in brackets are positive constants. We obtain an immediate
solution minimizing

∑

li∈S

ωi · I(y
⊤
i g(xi) < 0) +

∑

li /∈S

ωi · I(y
⊤
i g(xi) < 0) =

N
∑

i=1

ωi · I(y
⊤
i g(xi) < 0).

We reach the same conclusion assuming β < 0. Hence the first point of491

the Lemma follows.492

Now suppose known g(x) and its error ǫ over training data. That error
can be decomposed into two parts:

ǫ =
N
∑

i=1

ωi · I(y
⊤
i g(xi) < 0) =

∑

li∈S

ωi · I(y
⊤
i g(xi) < 0) +

∑

li /∈S

ωi · I(y
⊤
i g(xi) < 0)

= ǫ1 + ǫ2.
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The above expression can be written now as

A1 exp

(

−β

s(K − 1)

)

+

[

exp

(

β

s(K − 1)

)

− exp

(

−β

s(K − 1)

)]

ǫ1 +

+ A2 exp

(

−β

(K − s)(K − 1)

)

+

[

exp

(

β

(K − s)(K − 1)

)

− exp

(

−β

(K − s)(K − 1)

)]

ǫ2,

where A1 =
∑

li∈S
ωi and A2 =

∑

li /∈S
ωi. It can be easily verified that the

above expression is convex with respect to β. So deriving w.r.t. β, equating
to zero and simplifying terms we get:

ǫ1

s
exp

(

β

s(K − 1)

)

+
ǫ2

K − s
exp

(

β

(K − s)(K − 1)

)

=

=
(A1 − ǫ1)

s
exp

(

−β

s(K − 1)

)

+
(A2 − ǫ2)

K − s
exp

(

−β

(K − s)(K − 1)

)

.

There is no direct procedure to solve β here. We propose the change of
variable β = s(K − s)(K − 1) log (x) with x > 0. This change transform the
last equation into the polynomial

(K−s)ǫ1 ·x(K−s)+sǫ2 ·xs−s(A2−ǫ2) ·x−s−(K−s)(A1−ǫ1) ·x−(K−s) = 0,

or, equivalently, multiplying by x(K−s)

(K − s)ǫ1 · x2(K−s) + sǫ2 · xK − s(A2 − ǫ2) · x(K−2s) − (K − s)(A1 − ǫ1) = 0.

According to Descartes’ Theorem of the Signs the last polynomial has a493

single real positive root. We estimate it numerically and undo the change494

of variable. This is the second point of the Lemma. Note here that the root495

will be zero only if A1 = ǫ1, what makes β = −∞. This possibility must be496

considered explicitly in the implementation.497
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