
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1

A morphological approach to curvature-based
evolution of curves and surfaces

Pablo Márquez-Neila, Luis Baumela and Luis Alvarez

Abstract—We introduce new results connecting differential and morphological operators that provide a formal and theoretically
grounded approach for stable and fast contour evolution. Contour evolution algorithms have been extensively used for boundary
detection and tracking in computer vision. The standard solution based on partial differential equations and level-sets requires the
use of numerical methods of integration that are costly computationally and may have stability issues. We present a morphological
approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate
the numerical solution of the curve evolution PDE by the successive application of a set of morphological operators defined on a binary
level-set and with equivalent infinitesimal behavior. These operators are very fast, do not suffer numerical stability issues and do not
degrade the level set function, so there is no need of re-initializing it. Moreover, their implementation is much easier since they do
not require the use of sophisticated numerical algorithms. We validate the approach providing a morphological implementation of the
Geodesic Active Contours, the Active Contours Without Borders and Turpopixels. In the experiments conducted the morphological
implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in
simplicity, speed and stability.

Index Terms—Computer vision, Mathematical Morphology, Curve Evolution, Level-Sets, Morphological Snakes

✦

1 INTRODUCTION

ACTIVE contours or snakes are one of the most
widely used computer vision tools [1], [2]. Al-

though they provide a unified account of a number
of visual problems, including detection of edge and
subjective contours [2] and stereo matching [3], they
have been extensively used for object boundary detec-
tion and tracking [1], [2], [4], [5], [6], [7], [8], [9] as
well as segmenting 2D [10], [11], [12], [13], [14] and
tensor images [15]. Recent results have shown that they
can achieve robust tracking performance over long and
challenging sequences with dramatic changes in target
shape and appearance [16], [17] as well as overlaps,
partial occlusions and poor image contrast [18]. It has
also been used for oversegmentation [19]. These tasks are
formulated in variational terms, where an image induces
an energy functional on a curve or surface. Minimizing
the functional in a steepest descent manner evolves the
surface towards a local minimum that represents the
solution of the problem.

Despite its great success, the original parametric active
contour approach depends on the parametrization of
the contour and cannot naturally handle changes in

• Pablo Márquez-Neila is with the Departamento de Inteligencia Artificial,
Universidad Politécnica de Madrid, Spain.
E-mail: p.mneila@upm.es

• Luis Baumela is with the Departamento de Inteligencia Artificial, Univer-
sidad Politécnica de Madrid, Spain.
E-mail: lbaumela@fi.upm.es

• Luis Alvarez is with the Departamento de Informática y Sistemas, Uni-
versidad de las Palmas de Gran Canaria, Spain.
E-mail: lalvarez@dis.ulpgc.es

the topology of the curve. These issues were addressed
in subsequent approaches such as the Geodesic Active
Contour (GAC) [20], [21] and the Active Contours With-
out Edges (ACWE) [10], [11]. In the GAC the energy
functional is a geodesic in a Riemannian manifold with
a metric induced by image features, in its simplest
case, the target borders. The ACWE does not need well
defined borders and it is less sensitive to the initial con-
figuration and to the model parameters. Both approaches
are based on the level-set formulation [22], [23]. In this
case the curve is evolved by propagating an interface
represented by the zero level-set of a smooth func-
tion, using a time-dependent partial differential equation
(PDE). The solution to this PDE is costly computation-
ally, and in the case of the simplest finite-difference
explicit numerical scheme, it has stability constraints on
the size of the time step. Absolutely stable solutions
to the GAC model improve the stability by combining
a semi-implicit discretization with an additive operator
splitting (AOS) [24], [25]. Level-set solutions typically
develop steep or flat gradients that yield inaccuracies
in the numerical approximation [26]. This is usually
solved by periodically re-initializing the level-set func-
tion as a distance to the zero level-set, which can also
be addressed as a front propagation problem [27]. This
again increases the computational cost of the method
and reduces the topological flexibility, since it prevents
the level-set from creating new contours far away from
the initial interface [26]. For the ACWE model, however,
this re-initiliazation is optional [10].

Both the stability constraints and the necessity of
re-initializing the distance function render traditional
level-sets approaches as problematic schemes in time-

Digital Object Indentifier 10.1109/TPAMI.2013.106 0162-8828/13/$31.00 © 2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2

critical applications. A considerable number of studies
attempt to alleviate the computational demand reducing
the domain of computation in a narrow band around
the zero level-set together with multi-scale techniques,
e.g. [25]. Many of the most efficient approaches [9],
[12], [28], [29] avoid directly solving the PDE. They
are based on two key ideas. The curve is implicitly
represented by the set of image points neighboring the
target interface. It is evolved by successive introduction
and elimination of points in the interface set. Geometric
properties such as curvature and normal directions to the
curve are approximated using local operations on the set
of interface points.

Other approaches to contour evolution try to find
globally optimal solutions. This is possible for the GAC
model when additional constraints are imposed. For
example, Cohen et al. [30] use as additional constraints
the locations of the curve end points. The method from
Appleton et al. [31] requires a single point known to
be contained in the area inside the curve. Other recent
works find a convexification of the energy functional via
functional lifting and convex relaxation [32], [33], [34].
The minima of the resulting convex functional coincides
with the global minima. The minimization is based on
the duality of the total variation norm, which is much
faster than the traditional optimizations based on the
Euler-Lagrange equations and it is not sensitive to the
singularities of the level set function. Bresson et al. [32]
introduce and globally minimize three new functionals,
one closely related to the ACWE model. Their minimiza-
tion, based on the duality of the TV-norm, is reported
to be up to 60 times faster than the traditional solution
obtained with the Euler-Lagrange equation.

Despite the additional assumtions that some of the
global methods require, the advantages of a globally op-
timal solution are unquestionable. However, approaches
seeking local minima are also of interest in applications
that require an intrisically local solution, such as for
example for tracking deformable objects [16], [17] or
for oversegmentation [19]. Moreover, in complex image
segmentation problems it might be very difficult to find
a set of image features and an energy functional whose
global optimum is the desired segmentation. This is the
case, for example, in the analysis of Electron Microscopy
(EM) images [35], for which user interaction in conjunc-
tion with a local approach is presently the best available
approximation.

Our main goal in this work is to provide a formal,
theoretically grounded, approach for stable and fast
local contour evolution. We base our framework in the
mathematical morphology. We substitute the terms that
appear in the PDEs of contour evolution algorithms for
morphological operators that have equivalent infinitesi-
mal behavior. Then, the numerical solution of the PDE
is approximated by the successive application of mor-
phological operators. The level-set surface is now much
simpler to define. We assign a value of 0 outside the
contours and 1 inside. These operators are very fast, do

not suffer numerical stability issues and do not degrade
the level set function, so no re-initialization is required.
Moreover, their implementation is much easier since
they do not require the use of sophisticated numerical
algorithms.

To formally support our solution we introduce new re-
sults that relate differential and morphological operators.
The connection between differential and morphological
operators has also been studied before. Lax was the first
to use multi-scale dilations and erosions to give stable
and efficient numerical schemes for solving PDEs [36].
Later it was rediscovered by several authors [37], [38].
Now, it is well-known that the PDE evolution rule which
describes a curve moving along its normal behaves like
the morphological operators dilation and erosion acting
on the level set function [39]. However, not all PDEs have
equivalent morphological operators. The most important
PDE contour evolution rule, the mean curvature evolu-
tion [39], [40], has no known morphological equivalent
operator. The importance of curvature-based evolution
lies on the fact that it commonly appears in most PDE-
based algorithms as a regularizing term. Hence the
interest in finding a morphological equivalent. In this
direction, some advances were achieved by Catté, Dibos
and Koepfler proving that the mean curvature evolution
for planar curves can be replaced by the mean of two
morphological operators [41].

Our work has several contributions. First, we intro-
duce a curvature morphological operator that can be
used for curve evolution. Second, we prove that our
operator can be generalized to higher dimensions and,
therefore, it can be used for the evolution of curves,
surfaces and hyper-surfaces of any dimension. Third,
we show how the composition of different morpho-
logical operators approximates the numerical solution
of PDEs for hyper-surface evolution, with significant
gains in simplicity, speed, and stability. Specifically, we
introduce morphological versions of the Turbopixels su-
persegmentation algorithm and two of the most popular
curve evolution algorithms, the Geodesic Active Contours
(GAC) [20] and Chan and Vese’s Active Contours Without
Edges (ACWE) [10].

In [42] we presented a morphological approach to the
evolution of 2D contours based on which we introduced
the Morphological GAC. Here we generalize this result
to surfaces of any dimension, introduce theMorphological
Active Contours Without Edges (Morphological ACWE),
the Morphological Turbopixels and perform a larger set of
experiments.

The rest of the paper is organized as follows. In Sec-
tion 2 we present background knowledge about differ-
ential equations and morphological operators. Section 3
introduces the curvature morphological operator and
studies its behavior in 2D, 3D and n-dimensional cases.
We introduce theMorphological Snakesmodel in Section 4.
Some implementation details are given in Section 5.
Finally, we perform experimental analysis and draw
conclusions in Sections 6 and 7.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 3

2 BACKGROUND

In this section we briefly review both explicit and im-
plicit curve and surface evolution, morphological oper-
ators and the relation between PDEs and morpholog-
ical operators. The interested reader may consult [39]
for §2.1, [40] for §2.2 and [41] for the last part of §2.3.

2.1 PDEs and contour evolution

Differential operators are fundamental tools in the com-
puter vision and graphics communities. They are used
in a variety of tasks such as determining the length of
geodesic curves and computing the curvature of surfaces
or smoothing meshes. Differential operators are key to
contour evolution with PDEs [39], [40], where the in-
finitesimal change of a contour is given by a differential
operator. We begin by recalling some information about
curve evolution.

Let C : R
+ × [0, 1] → R

2 : (t, p) → C(t, p) be a
parametrized 2D curve over time. A differential oper-
ator L defines the curve evolution with the PDE Ct =
L(C). Different forms of L result in different types of
evolution. It is not difficult to see that every L can be
rewritten as L(C) = F ·N , where N is the normal to the
curve and F is a scalar field —possibly depending on
the curve— which determines the velocity of evolution
of each point in the curve.

Out of all the possible forms that L can take, a few
are of special interest for their theoretical properties and
because they have been extensively used. First, L may
be defined as the normal to the curve (i.e., F ∈ {1,−1}),
Ct = N or Ct = −N . Here, the curve moves along
its normal direction with constant velocity. Second, if
L(C) = KN (i.e., F = K), we get the intrinsic heat equa-
tion [40], Ct = KN , where K is the Euclidean curvature
of C. The curvature flow given by this expression takes
arbitrary non-intersecting curves and evolves them into
convex ones. Then, it evolves convex curves into circular
curves which converge to a point [39].
In many contexts it is unusual to work with an explicit

representation of the curve. When C is explicit, it is not
easy to deal with topological changes like merge and
split, and a re-parametrization of the curve may be re-
quired. The Osher-Setian [22] level set method fixes this
by representing the curve implicitly as a level set of an
embedding function. Let u : R+×R

2 → R be an implicit
representation of C such that C(t) = {(x, y);u(t, (x, y)) =
0}. If the curve evolution has the form Ct = F · N ,
the evolution of any function u(x, y) which embeds the

curve as one of its level sets is
∂u

∂t
= F · |∇u| [22], [39].

In the level-set framework, the previous PDEs for
curve evolution are

∂u

∂t
= ±|∇u| (1)

when F = ±1 and

∂u

∂t
= div

(
∇u

|∇u|

)
· |∇u| (2)

when F = K, since the divergence of the normalized
gradient gives the curvature of the implicit curve at each
point.

Most existing results for curve evolution also apply to
the case of surface evolution. The explicit representation
of an evolving surface is a map S : R+×[0, 1]2 → R

3. The
evolution rule of a surface has the form St = FN , where
F is a scalar field and N is the normal to the surface
at each point. The previous curve evolution approaches
have equivalent versions for surfaces when F = ±1 or
F = H, where H is the mean curvature of the surface.
The extension of the level-set framework to the implicit
surface evolution is straightforward. Consider the scalar
field u : R+×R3 → R. A surface S is implicitly defined as
a level set of u. The expressions for the implicit surface
evolution coincide with equation (1) when F = ±1 and
with equation (2) when F = H. Equation (2) defined
for the general n-dimensional case is known as the mean
curvature motion.

2.2 Morphological operators

Monotone contrast-invariant and translation-invariant
operators are called morphological operators. The most
common ones are the dilation and the erosion operators.
A dilation Dh with radius h of function u is defined as

Dhu(x) = sup
y∈hB(0,1)

u(x+ y), (3)

while the erosion has a similar form

Ehu(x) = inf
y∈hB(0,1)

u(x+ y). (4)

In both definitions, B(0, 1) is the ball of radius 1 centered
at 0 and the term hB is the set B scaled by h, i.e., hB =
{hx : x ∈ B}.

An interesting result in mathematical morphology is
that every morphological operator T admits a sup-inf
representation of the form

(Thu)(x) = sup
B∈B

inf
y∈x+hB

u(y) (5)

or a dual inf-sup representation

(Thu)(x) = inf
B∈B

sup
y∈x+hB

u(y). (6)

In both cases, B is a set of structuring elements that
uniquely defines the operator, and h is the size of the
operator.

For example, choosing a proper B one may express
dilations and erosions in a sup-inf or inf-sup form. The
dilation with radius h admits an inf-sup form when B is
made of the single structuring element, B = {B(0, 1)}.
Similarly, the erosion has an sup-inf form using the same
base.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 4

2.3 From PDEs to morphological operators

Some morphological operators can be expressed as
PDEs. The key idea to find these connections is to
study the behavior of the successive application of a
morphological operator with a very small radius. In this
section we review some of these relations.

The dilation Dh verifies that [37]

lim
h→0+

Dhu− u

h
= |∇u|. (7)

This means that the successive application of Dh with
very small radius, limm→∞(Dt/m)mu0, is equivalent to
the solution of

∂u

∂t
= |∇u| (8)

with initial value u(0,x) = u0(x). We say that the dilation
has an infinitesimal behavior equivalent to the PDE (8).

The erosion presents a similar property, since [37]

lim
h→0+

Ehu− u

h
= −|∇u|, (9)

and therefore the erosion has an infinitesimal behavior
equivalent to the PDE

∂u

∂t
= −|∇u| (10)

Thanks to this behavior, we can approximate the level-
set evolution PDEs (1) using the successive application
of the morphological operators Dh and Eh.

3 THE CURVATURE MORPHOLOGICAL OPERA-
TOR

In this section we introduce a new curvature morpho-
logical operator that can be used to evolve curves em-
bedded in spaces of any dimension.

3.1 The 2D curvature morphological operator

Let SIh and ISh be respectively the sup-inf and inf-
sup morphological operators given by the base B2 =
{[−1, 1]θ ⊂ R

2 : θ ∈ [0, π)} made of all segments of
length 2 centered at the origin. In their pioneering work,
Catté, Dibos and Koepfler proved that the successive
application of the mean operator, F√

h, for a very small h
is equivalent to the curvature flow of the PDE (2) [41],
where

(Fhu)(x) =
(SI2h u)(x) + (IS2h u)(x)

2
. (11)

Unfortunately, operator Fh is not contrast-invariant
and hence it is not a morphological operator. We avoid
this problem using operator composition.

Lemma 3.1. Let T 1
h and T 2

h be two morphological operators,
we have, for a small h, that

T 2
h/2 ◦ T

1
h/2u ≈

T 2
hu+ T 1

hu

2
. (12)

Proof: Let L1
h and L2

h be the corresponding infinites-
imal operators of morphological operators T 1

h and T 2
h .

We can write a first order approximation to the operator
composition T 2

h/2 ◦ T
1
h/2 as

T 2
h/2 ◦ T

1
h/2u ≈ T 2

h/2

(
u+

h

2
L1
h(u)

)

≈ u+
h

2
L1
h(u) +

h

2
L2
h(u) +

+

(
h

2

)2

L2
hL

1
h(u).

The last term depends on the squared value of h, and it
can be dismissed for a small h,

T 2
h/2◦T

1
h/2u ≈

u+ hL1
h(u)

2
+
u+ hL2

h(u)

2
≈

1

2
(T 2

hu+T 1
hu).

The approximation in (12) is accurate for small values
of h. In this case we can replace 1

2 (T
2
hu + T 1

hu) by the
composition T 2

h/2 ◦ T
1
h/2u. Then, the non-morphological

operator F√
h can be approximated by the composi-

tion SI√h ◦ IS
√
h.

Definition 3.2. The curvature morphological operator is
defined as SI√h ◦ IS

√
h.

3.2 The d-dimensional curvature morphological op-
erator

Here we generalize the curvature morphological opera-
tor to hyper-surfaces of any dimension. In this case the
embedding function is defined as u : Rd → R, and its
level sets are (d − 1)-hypersurfaces. The d-dimensional
morphological operators SIh and ISh are, respectively,
the sup-inf and inf-sup operators with the new base Bd,
made up of all hyper-disks of radius 1 centered at the
origin, Bd = {Kn : n ∈ Sd−1}, where Sd−1 = {n ∈ R

d :
‖n‖ = 1} and Kn = {v ∈ R

d :‖v‖ ≤ 1,vTn = 0}.
The effect of the mean operator (SIh + ISh)/2 over

the hyper-surfaces of u is explained by the following
Theorem,

Theorem 3.3. The d-dimensional operator Fh has an in-
finitesimal behavior given by

lim
h→0+

(F√
hu)− u

h
= (min(κ1, . . . , κd−1, 0)

+max(κ1, . . . , κd−1, 0)) · |∇u|,

where κi, 1 ≤ i ≤ d − 1 are the principal curvatures of the
hyper-surface implicitly defined by u at each point.

Proof: The projection matrix associated to a vec-
tor n ∈ Sd−1 is Pn = Id − nnT , where Id is the
identity d × d matrix. Pn projects any vector w to a
hyperplane orthogonal to n. We can easily deduce that
Kn = {Pnw : w ∈ Sd−1}.
To study the effect of the operators, we expand u using

Taylor series up to second order:

u(x+ hw) = u(x) + h∇u(x)Tw +
h2

2
wTD2(x)w + o(h3),

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 5

where D2(x) is the Hessian matrix of u at x. If we want
to restrict the Taylor expansion to the orthogonal plane
to a given vector n ∈ Sd−1 we can use the projection
matrix Pn. That is,

u(x+hPnw) = u(x)+h∇u(x)TPnw+
h2

2
wTPnD

2(x)Pnw+o(h3).

A case of special interest is ng = ∇u(x)
‖∇u(n)‖ , which cor-

responds to the analysis of the geometric properties of
the level set surface at x. In this case, the above Taylor
expansion can be expressed as

u(x+ hPng
w) = u(x) +

h2

2
wTPng

D2(x)Png
w + o(h3).

Note that the first order term cancels since Png
w is

orthogonal to ∇u(x). Matrix M = Png
D2(x)Png

is a d×d
matrix with d eigenvalues. One of them is λ0 = 0 which
corresponds to the eigenvector ng . The d−1 eigenvectors
λi, 1 ≤ i ≤ d − 1 are closely related to the principal
curvatures κi of the implicit hyper-surface at x:

λi = κi · |∇u(x)|. (13)

See the Chapter 11 of [40] for details. A straightforward
computation leads to

sup
y∈x+hKng

u(y) = sup
w∈Sd−1

u(x+ hPng
w) (14)

= u(x) +
h2

2
max(λ1, . . . , λd−1, 0) + o(h3),

inf
y∈x+hKng

u(y) = inf
w∈Sd−1

u(x+ hPng
w) (15)

= u(x) +
h2

2
min(λ1, . . . , λd−1, 0) + o(h3).

We will prove that the supreme of the infimum for the
SIh operator is attained at ng , so that

SIhu(x) = sup
n∈S(d−1)

inf
y∈hKn

u(y) = inf
y∈x+hKng

u(y).

Let us denote by nh ∈ Sd−1 an orthogonal direction
where

sup
n∈S(d−1)

inf
y∈hKn

u(y) = inf
y∈x+hKnh

u(y). (16)

Note that since Sn−1 is a compact set and n →
infy∈hKn

u(y) is a continuous function, then nh always
exists. We will show that

lim
h→0

nh = ng. (17)

To prove the equality we assume the opposite, that is,
there exists ε > 0 such that for each m ∈ N there exists
nhm

∈ Sd−1 with ‖nhm
−ng‖ > ε and |hm| <

1
m . We will

show that if hm is small enough, then

inf
y∈x+hKnhm

u(y) < inf
y∈x+hKng

u(y) (18)

which is in contradiction with the definition of nh in (16).
We observe that the above inequality is equivalent to

inf
w∈Sn−1

(
∇u(x)TPnhm

w +
hm

2
wTPnhm

D2(x)Pnhm
w + o(h2

m)

)

< inf
w∈Sn−1

(
hm

2
wTPng

D2(x)Png
w + o(h2

m)

)
.

When hm goes to 0, the right part of the above inequality
goes to 0 too. However, in the left hand side, we observe
that if we choose w = ng then ∇u(x)TPnh∞

ng = ε′ > 0
since ‖nhm

−ng‖ > ε. Therefore, the left hand side holds
that

inf
w∈Sn−1

(
∇u(x)TPnhm

w +
hm

2
wTPnhm

D2(x)Pnhm
w + o(h2

m)

)

≤ −ε′ +
hm

2
nT
g Pnhm

D2(x)Pnhm
ng + o(h2

m).

If hm is small enough, the right part of the above
inequality is strictly lower than 0, and (18) is satisfied.
This is in contradiction with the definition of nh, and
therefore (17) is true.
We can use the same argument for the operator ISh:

when h goes to 0, the infimum is attained in the plane
orthogonal to the gradient. Therefore, when h is small,
the operators SIh and ISh behave as given in the
expressions (14) and (15). Using these expressions, the
mean operator Fh

Fhu(x) =
(SI2h u)(x) + (IS2h u)(x)

2

can be written as

Fhu(x) = u(x) + h2(min(λ1, . . . , λd−1, 0)

+max(λ1, . . . , λd−1, 0)) + o(h3).

Reorganizing terms and substituting the eigenvalues
of M according to (13), we obtain that

lim
h→0+

F√
hu(x)− u(x)

h
= (min(κ1, . . . , κd−1, 0)

max(κ1, . . . , κd−1, 0)) · |∇u|.

Corollary 3.4. The 2D operator Fh has an infinitesimal
behavior given by

lim
h→0+

(F√
hu)− u

h
= κ · |∇u| = div

(
∇u

|∇u|

)
· |∇u|. (19)

Proof: Trivial from Theorem 3.3.
This is the result that Catté, Dibos and Koepfler proved

in [41]. Here we have shown that it is a special case
of the more general Theorem 3.3. In consequence, the
successive application of the curvature morphological
operator, SI√h ◦ IS

√
h, with base B2 is equivalent to the

solution of PDE (2).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 6

n

nnnnnnnnnnnnnnKnnKnKKnKKnKKKnKKnKKKKnKKnKKKKKKnnKKK

n

nnnnnnnnnnKnnKnnKnnKnKnnKKnKKKnKKKnKKKnKKKKnKKnKKKKnKKKnKKnKKKKnKKK n nnnnnnnnnnnnnnnnnnn nnnn nnnn KnKKKnKnn KKKnKnn KKnn KKKKn KKn KKKn KKn KKKn KKn KKKKKKKKKKn Kn KKKKKKKKKKKKKn KKn KKKKKKKn KKnnn KKKKKKKKn Kn KKKKKKn KKn KKKKKKKKn KKn KKKKKKn KKn KKKKKKn Kn KKKKn KKn KKKKKn KKn KKKn Kn KKKKnn KKKnn KKKKKKKKKKKKKKKKKKKKK

Fig. 1. The base B3 for the 3D SIh and ISh operators is
made up of all disks with radius 1 centered at the origin.
The figure depicts three of those disks marked in blue.
Each disk Kn is determined by its normal n.

3.3 The 3D curvature morphological operator

Although we extended in section 3.2 the definition of the
curvature morphological operator to the n-dimensional
case, practical applications will typically use the 2D and
3D versions to process respectively images and image
stacks. In the experiments section we study these two
cases. So, for completeness, here we consider the 3D
curvature morphological operator and compare it with
the well-known mean curvature motion PDE.

Operators SIh and ISh may also be expressed in the
3D case. We define the new base as the set of all disks
of radius 1 centered at the origin B3 = {Kn : n ∈ S2},
where S2 = {n ∈ R

3 : ‖n‖ = 1} is the 2-sphere of
radius 1 and Kn = {v ∈ R

3 : ‖v‖ ≤ 1,vTn = 0} is the
disk of radius 1 centered at the origin and orthogonal
to n. Figure 1 shows some elements of B3. Now we can
state the following

Corollary 3.5. The 3D operator Fh has the infinitesimal
behavior

lim
h→0+

(F√
hu)− u

h
= (min(κ1, κ2, 0)+max(κ1, κ2, 0))·|∇u|,

where κ1 and κ2 are the principal curvatures of the surface
implicitly defined by u at each point.

Proof: Trivial from Theorem 3.3.
Let us now compare the infinitesimal behavior of the

3D operator Fh with the mean curvature motion PDE (2)
in 3D. Recall that the term div

(
∇u
|∇u|

)
is equivalent to

the mean curvature H = κ1 + κ2 of the implicit surface.
Therefore, the mean curvature motion may be rewritten
as

∂u

∂t
= (κ1 + κ2) · |∇u|. (20)

Corollary 3.5 relates the evolution provided
by SI√h ◦ IS

√
h with the evolution of PDE

∂u

∂t
= (min(κ1, κ2, 0) + max(κ1, κ2, 0)) · |∇u|. (21)

Comparing PDEs (20) and (21) we can immediately
conclude that the evolution provided by the curvature
morphological operator is not strictly equivalent to the
mean curvature flow. We can distinguish two cases. First,

Fig. 2. The base P for the 2D discrete SId ◦ ISd operator.

if both principal curvatures have the same sign (e.g., a
sphere) and assuming that |κ2| ≥ |κ1|, (21) becomes

∂u

∂t
= κ2 · |∇u|.

This is equivalent to the mean curvature motion if κ1 =
0. As |κ1| gets larger, the difference between both flows
becomes more noticeable. However, the sign of the flow
is the same in both equations. In the second case, the
principal curvatures have different sign (e.g., a catenoid).
Then, (21) becomes

∂u

∂t
= (κ1 + κ2) · |∇u|,

which coincides with the mean curvature motion PDE.

3.4 The discrete curvature morphological operator

The embedding function u has to be discretized to be
used in practical applications. Usually, the discretization
of u consists of an orthogonal grid of cells with constant
values within each cell. These cells are often called pixels
when u is two-dimensional and voxels when it is three-
dimensional. When u is discrete, i.e. u : Zd → R, expres-
sion u(x) refers to the value of the cell at position x.
Working with discrete functions, the curvature mor-

phological operator must be discretized accordingly,
which is equivalent to discretize its base B. For the 2D
case, we choose the four discrete segments of three pixels
of length in all possible orientations,

P =

⎧⎪⎪⎨
⎪⎪⎩
{(0, 0), (1, 0), (−1, 0)},
{(0, 0), (0, 1), (0,−1)},
{(0, 0), (1, 1), (−1,−1)},
{(0, 0), (1,−1), (−1, 1)}

⎫⎪⎪⎬
⎪⎪⎭ . (22)

See Figure 2 for a graphical representation. For the 3D
operator, we take the nine discrete planes of 3×3 voxels
in all possible orientations (see Figure 3).
We use expression SId ◦ ISd to denote the discrete cur-

vature morphological operator. This notation is the same for
all the dimensions. Note that here d stands for discrete,
and it is not the scale of the operator. In the discrete
version we do not need to explicitly indicate the scale as
we will always use the smallest one.

3.5 How does the SId ◦ ISd operator work?

One of the overall effects of the SId ◦ ISd operator is the
smoothing of the implicit hyper-surfaces of u. Here we
present an intuitive explanation of how the smoothing
is achieved with the 2D SId ◦ ISd operator.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 7

SId−−→
SId−−→

SId−−→
SId−−→

(a) (b) (c) (d)

Fig. 4. Some examples of the effect of the SId operator on individual pixels of binary images. In those cases where
a straight line is found (marked in red), the central pixel remains active ((a) and (b)). When the central pixel does not
belong to a straight line of active pixels, it is made inactive ((c) and (d)). For exemplification purposes, we assume the
pixels on the borders are not affected by the operator.

ISd−−→
ISd−−→

ISd−−→
ISd−−→

(a) (b) (c) (d)

Fig. 5. Idem for the ISd operator.

Fig. 3. The base P for the 3D discrete SId ◦ ISd operator.

In a discrete binary function u, both SId and ISd

perform the same operation, but SId works only on
white (or active) pixels and ISd only on black (or inactive)
pixels. It is easy to see that SId does not affect inactive
pixels. Suppose u(x0) is an inactive pixel, i.e., u(x0) = 0.
Then, infy∈x0+P u(y) will be 0 for every segment P
in P , and therefore (SId u)(x0) = 0. Following a similar
reasoning, we can see that ISd does not affect active
pixels.

For every active pixel x1 in a binary image, the SId op-
erator looks for small (3 pixels long) straight lines of
active pixels which contain x1. This search is done in
the four possible orientations corresponding to the four
segments in P . If no straight line exists, the pixel is made
inactive (see Figure 4). Sharp edges (Fig. 4c and 4d) are
detected as those pixels which are not part of a straight

line and removed. The active pixels in smooth edges
(Fig. 4a and 4b) remain unchanged.
For inactive pixels, the ISd operator carries out a

similar procedure (see Figure 5).
The composition SId ◦ ISd first removes the sharp

inactive pixels with ISd, and then repeats the procedure
for the active ones with SId. The result is a global
smoothing of u, as can be seen in the first row of Figure 6.

4 MORPHOLOGICAL SNAKES

Now we have a set of morphological operators —
dilation, erosion and the new curvature flow operator
SId ◦ ISd— which have an infinitesimal behavior like
PDEs (1) and (2) respectively. These two PDEs are fun-
damental in many practical applications, since they are
part of many contour evolution rules. Thus, given a PDE
of contour evolution which includes terms (1) and (2),
we may compose their corresponding morphological
operators to approximate the solution. In other words,
now we can use mathematical morphology to evolve
contours. In the following sections, we apply this idea to
morphologically solve some well-known contour evolu-
tion PDEs: the GAC [20] and the ACWE models [10].

4.1 Morphological GAC

In the GAC framework, an energy functional, which
depends on the contents of an image I , is assigned to
a curve,

E(C) =

∫ length(C)

0

g(I)(C(s))ds (23)

=

∫ 1

0

g(I)(C(p)) · |Cp|dp,

or surface,

E(S) =

∫∫
g(I)(S(a))da,

where ds = |Cp|dp is the Euclidean arc-length
parametrization of the curve, da is the Euclidean element

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 8

of area, and g(I) : Rd → R
+, x → g(I)(x) allows us to

select which regions of the image we are interested in.
Typically, g(I) could be

g(I) =
1√

1 + α|∇Gσ ∗ I|
, (24)

which is low in the edges of the image, or g(I) = |Gσ∗I|,
which attains its minima in the center of the image dark
lines. Gσ∗ is a gaussian filter with standard deviation σ.
The geodesic active contours model does not depend
on the parametrization of the curve or surface, and the
minimum energy hyper-surfaces

C∗ = argmin
C

E(C)

S∗ = argmin
S

E(S)

correspond to the geodesics of a Riemannian space
whose metric is defined by g(I). These hyper-surfaces
tend to be smooth and to pass through low values of
the function g(I).
The minimization of the energy functionals is done

in a steepest-descent way. The Euler-Lagrange equation
of the functional gives the direction of the descent. The
local minima are reached at the steady states of the
differential equation

Ct = (g(I) · K − ∇g(I) · N)N

for curves and

St = (g(I) · H −∇g(I) · N)N

for surfaces, with the given initial values C(0) = C0 and
S(0) = S0.

Sometimes, the attraction force is not strong enough
to move the hyper-surface (because the field ∇g(I) is
too small or because this field and the normal are or-
thogonal). Hence, portions of the hyper-surface usually
get stuck in these non-informative areas. To overcome
the problem, a common solution is the introduction of
the so-called balloon force [43]. The evolution with the
auxiliary balloon force is

Ct = (g(I)K + g(I)ν −∇g(I) · N)N (25)

or
St = (g(I)H + g(I)ν −∇g(I) · N)N

where ν ∈ R is the balloon force parameter.
These expressions can be rewritten in terms of a level

set implementation as

∂u

∂t
= g(I)|∇u|div

(
∇u

|∇u|

)
+g(I)|∇u|ν+∇g(I)∇u. (26)

The flow given by this expression has three components.
The smoothing force, which tends to smooth the hyper-
surface at high curvature segments; the balloon force,
which inflates or deflates the hyper-surface in areas of
little information; and the image attraction force, which
is responsible for bringing the hyper-surface to the in-
teresting regions of the image.

Inspired by the similarities between the GAC PDE (26)
and PDEs (7), (9) and (19) describing the infinitesi-
mal behavior of morphological operators, we propose
a fast and stable curve evolution approach based on
mathematical morphology. The new evolution will use
a combination of binary morphological operators whose
infinitesimal behavior is similar to the flow expressed
by the equation (26). Binary operators require a binary
embedding function u. Therefore, the hyper-surface is
given as the level set 1

2 of a binary piecewise constant
function u : Z

d → {0, 1}. We take u(x) = 1 for every
point x inside the hyper-surface, and u(x) = 0 for every
point x outside. The morphological operators will act
on u and, hence, they will implicitly evolve the hyper-
surface.

4.1.1 Balloon force

We focus on the balloon type operator term of equa-
tion (26):

∂u

∂t
= g(I) · ν · |∇u|. (27)

The factor g(I) controls the strength of the balloon
force in different fragments of the hyper-surface: when
g(I) is high, the corresponding fragment is located far
from a target region, and the balloon force must be
strong; on the other hand, when g(I) becomes lower,
the hyper-surface is approaching its objective, and hence
the balloon force becomes unnecessary. The effect of the
g(I) factor in (27) can be discretized with a single thresh-
old θ: when g(I) is greater than θ, the corresponding
point is updated according to the balloon force, and
left unchanged otherwise. Depending on the sign of ν,
the remaining factors ν · |∇u| lead to the dilation and
the erosion PDEs (1). Given the hyper-surface status
at iteration n, un : Z

d → {0, 1}, the balloon force
PDE (27) applied over un can be approximated using
the following morphological approach:

un+1(x) =

⎧⎪⎨
⎪⎩
(Ddu

n)(x) if g(I)(x) > θ and ν > 0

(Edu
n)(x) if g(I)(x) > θ and ν < 0

un(x) otherwise
.

Dd and Ed are the discrete versions of dilation and
erosion.

4.1.2 Smoothing force

The smoothing force term of (26),

∂u

∂t
= g(I) · |∇u| · div

(
∇u

|∇u|

)
, (28)

is a weighted version of the mean curvature motion
PDE (2). As in the previous case, the g(I) factor acts like
a weight which controls the strength of the smoothing
operation at every point. We could discretize it again by
means of a threshold θ. However, in our experiments
we have seen that this threshold is unnecessary. In
Corollary 3.4 and Section 3.4 we prove that the discrete

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 9

morphological curvature operator, SId ◦ ISd, has an in-
finitesimal behavior equivalent to the mean curvature
motion PDE (2). Thus, the morphological equivalent of
PDE (28) is

un+1(x) =

(
(SI

d
◦ IS

d
)μun

)
(x)

The number of successive applications of the smoothing
operator controls the strength of the smoothing step. This
number is indicated by parameter μ ∈ N.

4.1.3 Solving the complete GAC PDE

As we stated above, the active contour equation (26)
is made up of three different components: a smoothing
force, a balloon force and an attraction force. We have
seen how two of these components may be solved with
morphological operators. The third component, i.e., the
attraction force, has an immediate discrete version as we
will see below.

In the PDE, the combination of the three components
is performed through their addition. Our morphological
solution will combine them by composition: in each
iteration, we will apply the morphological balloon (27),
the morphological smoothing (28) and the discretized
attraction force over the embedding level set function u.
Given the snake status at iteration n, un, we get un+1

using the following steps:

un+ 1
3 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Ddu
n)(x) if g(I)(x) > θ

and ν > 0

(Edu
n)(x) if g(I)(x) > θ

and ν < 0

un(x) otherwise

un+ 2
3 (x) =

⎧⎪⎨
⎪⎩
1 if ∇un+ 1

3∇g(I)(x) > 0

0 if ∇un+ 1
3∇g(I)(x) < 0

un+ 1
3 if ∇un+ 1

3∇g(I)(x) = 0

(29)

un+1(x) =

(
(SI

d
◦ IS

d
)μun+ 2

3

)
(x)

which is the morphological implementation of the
geodesic active contour PDE.

4.2 Morphological ACWE

Chan and Vese [10] define an energy functional for image
segmentation which takes into account the content of the
interior and exterior regions of the curve (or surface) in
contrast to the GAC, which only take into account the
places where the curve (or surface) passes. The ACWE
functional of a curve C is

F (c1, c2, C) = μ · length(C) + ν · area(inside(C))

+λ1

∫
inside(C)

‖I(x)− c1‖dx (30)

+λ2

∫
outside(C)

‖I(x)− c2‖dx,

where the non-negative parameters μ, ν, λ1 and λ2

control the strength of each term. The three-dimensional
version of this functional F (c1, c2,S) is obtained by re-
placing the operators length by area and area by volume.

The minimization of functional

min
c1,c2,C

F (c1, c2, C) or min
c1,c2,S

F (c1, c2,S)

is slightly challenging, since it has two additional scalar
variables which were not present in the geodesic active
contour model. However, given a fixed contour, the
values of c1 and c2 which minimize F are the mean of the
values of I inside and outside the contour. For curves,

c1(C) =

∫
inside(C) I(x)dx∫

inside(C) dx
, c2(C) =

∫
outside(C) I(x)dx∫

outside(C) dx
.

The Euler-Lagrange equation for the implicit version
of functional (30) is [10]

∂u

∂t
= |∇u|

(
μdiv

(
∇u

|∇u|

)
− ν (31)

−λ1(I − c1)
2 + λ2(I − c2)

2
)
,

which is valid for a (d − 1)-hypersurface defined as a
level set of u : R

d → R. This equation specifies how
the implicit hyper-surface should evolve to minimize
functional F in a steepest descent manner. It has a
smoothing and a balloon term, which are treated as in
the GAC model: the SId ◦ ISd approximate the smooth-
ing term and the erosion and dilation approximate the
balloon. The image attachment term is new, but deriving
its morphological approximation is not difficult. When
λ1|∇u|(I − c1)

2 < λ2|∇u|(I − c2)
2 at x, x belongs to

the interior of the curve; if the inequality is reversed,
x belongs to the exterior of the curve; otherwise, x re-
mains where it was. As before, the hyper-surface must
be defined as the level set 1

2 of a binary embedding
function u : Zd → {0, 1}.
The morphological ACWE algorithm is given by the

following three steps:

un+ 1
3 (x) =

⎧⎪⎨
⎪⎩
(Ddu

n)(x) if ν > 0

(Edu
n)(x) if ν < 0

un(x) otherwise
(32)

un+ 2
3 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if |∇un+ 1
3 |(λ1(I − c1)

2

−λ2(I − c2)
2)(x) < 0

0 if |∇un+ 1
3 |(λ1(I − c1)

2

−λ2(I − c2)
2)(x) > 0

un+ 1
3 otherwise

un+1(x) =
(
(SId ◦ ISd)

μun+ 2
3

)
(x).

This expression may be used in a fast, simple, stable and
robust method for minimizing the ACWE functional [10].

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 10

S
I
d
◦
I
S
d

it = 0 it = 1 it = 2 it = 3 it = 4 it = 5

M
ea
n
cu

rv
.
fl
ow

t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

Fig. 6. Evolution of a 2D shape with the discrete curvature morphological operator SId ◦ ISd (upper row) and the
mean curvature PDE (bottom row). Background images represent the embedding function u. The red curves are the
1
2 level set. Below each image we display the number of iterations (upper row) and the time parameter (lower row).

5 IMPLEMENTATION DETAILS

The implementation of equations (29) and (32) is
straightforward, but some details are worth mentioning.
The embedding function u is stored as a d-dimensional
array with a Boolean values at each cell. The dilation at
each cell is implemented as the maximum of the values
of u in the neighborhood of the cell. Similarly, the erosion
is the minimum of the values of u in the neighborhood of
the cell. The neighborhood is defined as the Moore neigh-
borhood, i.e., the set of cells at a Chebyshev distance of 1.
For example, in the two-dimensional case, the dilation is

un+1(i, j) = max
Δi,Δj∈{−1,0,1}

un(i+Δi, j +Δj)

and the erosion is

un+1(i, j) = min
Δi,Δj∈{−1,0,1}

un(i+Δi, j +Δj).

The gradient is the d-dimensional vector made up of all
directional derivatives, ∇u = [ux, uy, . . . ,]

.
Derivatives are computed using central differences.

For example, in 2D, the derivatives of u with respect
of x and y are computed as

ux(i, j) =
1

2
(u(i+ 1, j)− u(i− 1, j)) , (33)

uy(i, j) =
1

2
(u(i, j + 1)− u(i, j − 1)) . (34)

Finally, the order of operator composition SId and ISd

in (12) could be either SId ◦ ISd or ISd ◦SId, since the
addition is commutative. Throughout the paper we have
chosen the first one. However, in practice, to balance the
contribution of both operator composition choices we
alternate them through iterations. The SId ◦ ISd operator
is computed in two steps: first, the ISd step which in 2D
is

un+1(i, j) = min
P∈P

max
(Δi,Δj)∈P

un(i+Δi, j +Δj),

and then the SId step which in 2D is

un+1(i, j) = max
P∈P

min
(Δi,Δj)∈P

un(i+Δi, j +Δj).

Operator ISd ◦SId performs these steps in reverse order.
P is defined in (22) and shown in Figure 2. For a 3D
embedding function the base P should be as in Figure 3.
In an efficient implementation, inactive cells should be
ignored in the erosion and in the SId operator, and active
cells should be ignored in the dilation and in the SId
operator.

This implementation is well suited for parallelization
in SIMD architectures, such as GPUs. For an efficient
single thread implementation, one should consider using
the narrow band technique, which is not difficult to
introduce. Broadly speaking, one should maintain two
lists of cells —the list of outside boundary cells and
the list of inside boundary cells— and apply the above
implementation only over the cells in these lists. After
each step, the lists should be updated accordingly.

In the experiments section we compare the perfor-
mance of the morphological and a numerical solution for
the GAC and ACWE algorithms. Numerical implemen-
tations of the algorithms are more complex and require a
broader set of mathematical tools than than the morpho-
logical ones. Also, numerical algorithms may degenerate
the level-set function, which eventually becomes too flat
and no longer a signed distance function. This has to be
explicitly fixed. We use the approach of [44], [45], based
on solving {

ψτ = sign(u(t))(1− |∇ψ|)

ψ(0, ·) = u(t, ·),
(35)

where u(t, ·) is the level set function at time t. We
discretize (35) with Godunov’s method [45]. The steady
state of (35) is a signed distance function with the same
contour as u(t, ·). However, we do not iterate until
reaching the steady state. Instead, we have found that
running one iteration of the scheme in (35) after each

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 11

iteration of the scheme for the numerical solution suffices
to prevent the degeneration of the level-set function. This
is the approach used in our experiments.

As in the morphological implementation, we discretize
the level set function u using a two-dimensional array.
Here, each cell stores a floating point value. We use the
central differences scheme for the spatial discretization
of the PDEs. The grid spacing is fixed to 1, so the
first derivatives are given by (33) and (34). The second
derivatives are

uxx(i, j) = u(i+ 1, j) + u(i− 1, j)− 2u(i, j),

uyy(i, j) = u(i, j + 1) + u(i, j − 1)− 2u(i, j),

uxy(i, j) =
1

4
(u(i+ 1, j + 1)− u(i− 1, j + 1)

−u(i+ 1, j − 1) + u(i− 1, j − 1)).

The curvature is discretized as

div
(
∇u

‖∇u‖

)
=

uxxu
2
y − 2uxyuxuy + uyyu

2
x(

u2
x + u2

y

) 3
2

.

The other terms in PDEs (26) and (31) are straight-
forward to compute using the first and second order
derivatives.

The discretization of the time is done with the forward
(explicit) method. The time step Δt is dynamically deter-
mined so that the CFL condition is met but the evolution
is not too slow.

6 EXPERIMENTAL RESULTS

Besides its theoretical relevance, the morphological
framework introduced in this work also presents ad-
vantages in terms of required computational resources,
simplicity and stability. The aim of the experiments
conducted is comparing qualitatively and quantitatively
the performance of the morphological and numerical
evolution algorithms.

6.1 Smoothing

First, we qualitatively compare the smoothing achieved
with the discrete curvature morphological operator,
SId ◦ ISd, and that obtained with the numerical solution
of the mean curvature PDE (2). Figures 6 and 7 compare
both methods in 2D and 3D respectively. The 2D case
shown in Figure 6 starts the evolution at a 13×13 pixels
square with a corner of size 5 × 5 pixels removed. In
Figure 7, the initial shape is a 16 × 16 × 16 pixels cube
with the 7× 7× 7 pixels corner removed. In the 2D (3D)
experiments we can see that both the numerical and mor-
phological approaches smooth the interface gradually
towards a circular (spherical) shape. In the 2D evolution
case (see Figure 6) the curve at iteration number 5
(last column) in the morphological algorithm is most
similar to the numerical mean curvature result for time
t = 8. Something similar occurs for the 3D evolution
at iteration number 6 and time t = 8. In both cases it
is not easy to decide which is the best pair of curves

to compare, since we do not have an analytic relation
between parameter t of the numerical mean curvature
evolution and the number of iterations of the discrete
morphological curvature approach. Nevertheless, the
qualitative analysis of Figures 6 and 7 confirms that the
morphological and numerical smoothing operators of 2D
and 3D interfaces is very similar.

6.2 Contour evolution

Our next group of experiments assess the performance of
the morphological approaches of contour evolution and
compare their results with the numerical solution of their
associated PDEs. We have implemented the GAC (26),
ACWE (31), Morphological GAC (29) and Morphological
ACWE (32) models in C++ (only the 2D approaches) and
Python (both 2D and 3D approaches). For comparison
purposes, all implementations are single-threaded, and
they do not use improvement methods such as multi-
scale or narrow-band solutions, although all approaches
would equally benefit from them. We run the experi-
ments on a Intel Core 2 Duo 2.4 GHz. When given,
evolution times always refer to those obtained with the
C++ implementation.

Determining the parameters of the morphological al-
gorithms is not a complex task. The Morphological
GAC approach of (29) has parameters θ, ν and μ. The
smoothing strength μ serves as a scaling value. When we
look for small elements, μ should be small (i.e., 1) and
large otherwise. The parameter θ —the threshold of the
balloon and the smoothing— depends on g(I). A good
starting point is to set θ as the 40th percentile of g(I)
(see Figure 8). The stopping criterion g of (24) has two
parameters: α and σ. Parameter σ is assigned to match
the size of the image borders. The algorithm is not very
dependent on parameter α. A high value, such as 1000
or 10000 should be enough in most cases.

The parameters of the Morphological ACWE are much
simpler to set up and less sensitive to perturbations than
the Morphological GAC. This approach does not require
a threshold θ. The balloon force is seldom necessary. It
works directly on the image I . It does not use a stopping
criterion g. For the experiments, we have set λ1 = λ2 = 1
and ν = 0. The strength of the smoothing μ behaves as in
the morphological GAC. It should be low when we look
for small elements and large otherwise. Table 1 summa-
rizes the parameter values used in our experiments.

In Figures 9 and 10 we compare the performance of the
morphological and the numerical GAC in challenging
conditions. In Figure 9 we run both algorithms on a
noisy ultrasound image of a breast nodule. Although
the final results are similar, the morphological method is
almost one order of magnitude faster than its numerical
counterpart (see Table 2). This experiment also confirms
that the Morphological GAC works well in very noisy
conditions.

The starfish image in Figure 10 has non-convex parts,
elongated limbs and sharp angles at the junction of the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 12

S
I
d
◦
I
S
d

it = 0 it = 2 it = 4 it = 6 it = 8 it = 10

M
ea
n
cu

rv
.
fl
ow

t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

Fig. 7. Evolution of a 3D shape with the discrete curvature morphological operator SId ◦ ISd (row 1) and the mean
curvature PDE (row 2). The shapes correspond to the 1

2 level set.

Morphological GAC GAC
Image size α σ μ θ ν α σ μ ν

Breast nodule 256× 256 1000
√
30 1 0.31 1 1000

√
30 0.1 1

Starfish 275× 323 1000 2 1 & 2 0.3 −1 100000 2 0.1 −0.2

Morphological ACWE ACWE
Image size μ λ1 λ2 ν μ λ1 λ2 ν

Lakes 286× 231 3 1 1 0 0.2 1 1 0

Europe 240× 185 1 1 1 0 0.05 1 1 0

Dendrite 39× 200× 200 1 1 1 0 – – – –

TABLE 1
Values for the parameters used in the experiments.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g(I)

0

1000

2000

3000

4000

P
ix
e
ls

0.0 0.2 0.4 0.6 0.8 1.0

g(I)

0

500

1000

1500

2000

2500

3000

3500

4000

P
ix
e
ls

(a) (b)

Fig. 8. Histogram of g(I) for (a) the breast nodule and
(b) the starfish images. The threshold θ, marked in red, is
set around the 40th percentile in each case.

limbs. This is a challenging situation for the GAC (see
bottom row of Figure 10), since it tends to shorten long
and thin structures and to over-smooth sharp corners.
In the two upper rows of Figure 10 we show the
segmentation results for different morphological GAC
regularizations. In the morphological approaches we can
increase the strength of the regularization by repeating
the IS ◦SI operator. In the top row we show the results
involving one regularization step per algorithm iteration
(μ = 1). In the middle row we show the evolution results
when applying two regularization steps per iteration
(μ = 2). We can observe that the small background
blobs, as well as the villi along the limbs, disappear in

M
o
rp
h
.
G
A
C

it = 0 it = 20 it = 45

G
A
C

t = 0 t = 50 t = 80

Fig. 9. Segmentation of a noisy ultrasound image. GAC
initialization: u0 = 20 −

√
(x− 126)2 + (y − 100)2.

Morphological GAC initialization: u0 =

T
[
20−

√
(x− 126)2 + (y − 100)2 > 0

]
.

the strongly regularized solution. Results in Figure 10
prove that the Morphological GAC performs better with
sharp and elongated structures. In terms of efficiency, the
morphological approach is again one order of magnitude
faster than the numerical solution.

In the following experiment we compare the evolution

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 13

of the energies in the morphological and numerical
GAC. Since the parameters in the starfish example are
different for the Morphological GAC and the standard
GAC (note that α = 103 in the first case and α = 106

in the second one) their energies are not comparable. In
order to perform a comparison between the evolution
of the energies for both methods, we ran again the
GAC algorithm with α = 103. Figure 11(a) shows the
evolution of the energy of the Morphological GAC (i.e.,
the evolution seen in Figure 10) and the energy of the
GAC with the new parameter set. The energy for the
morphological version of the algorithm is computed
with the parameter μ = 0.1 given in Table 1 for their
continuous counterparts, since the parameter μ = 2 of
the morphological methods is meaningless for energy
computation. Note that in both cases the global trend
in the evolution tends to decrease the energy. How-
ever, in both approaches, it increases in some intervals
along the evolution. This is due to both the balloon
force term included in the PDE, that is not part of the
minimized energy, and the fact that functional gradient
descent optimization does not guarantees that the energy
always decreases. Note also that the evolution of the
energy for the GAC continues to fall below the minimum
energy reached by its morphological counterpart. This
is because the borders of the starfish limbs are almost
perpendicular to the front of evolution and they are not
capable of stopping the shrinkage of the curve. Hence, it
continues to evolve until it becomes a point and therefore
its energy is zero. It is a well-known problem of the GAC
model that the global minimum of the energy is reached
when the curve shrinks to a point. Therefore, the image
segmentation with GAC heavily relies on the existence
of local minima.

In Figures 12 and 13 we compare the performance
of the morphological and numerical ACWE. In the first
Figure we segment a group of lakes in a satellite im-
age. Here both methods work in uninformative (zero-
gradient) areas without the balloon force. Also, the initial
curve u0 does not require to surround the objects. We
also consider the detection of point clouds in images,
where the ACWE model is known to work much better
than the GAC [10]. Figure 13 depicts the evolution of a
curve guided by an image of Europe night lights. Again,
morphological and numerical results are very similar,
with the morphological algorithm outperforming the
numerical one in terms of processing time (see Table 2).
The evolution of the energy for the ACWE-based

methods in the lakes experiment is plotted in Fig-
ure 11(b). As above, the parameter μ for computing the
energy of the morphological ACWE is the continuous
one μ = 0.2. The morphological parameter μ = 3 is
meaningless for energy computation. We observe that in
the case of ACWE the energies of both methods have no
oscillations and steadily decrease in each iteration. This
nice behavior is due to the fact that the ACWE energy is
expected to be smoother than the GAC one because of
the area global terms and the lack of the balloon force

M
o
rp
h
.
G
A
C

(μ
=

1
)

it = 0 it = 80 it = 110

M
o
rp
h
.
G
A
C

(μ
=

2
)

it = 0 it = 80 it = 110

G
A
C

t = 0 t = 4000 t = 5000

Fig. 10. Segmentation of elongated and narrow
structures. GAC initialization u0 = 135 −√
(x− 138)2 + 3

4 (y − 163)2. Morphological GAC initializa-

tion u0 = T
[
135−

√
(x− 138)2 + 3

4 (y − 163)2 > 0
]
.

0 20 40 60 80 100 120

Iteration

250

300

350

400

450

500

550

E
n
e
rg
y

0 100 200 300 400 500 600 700
Time

0 50 100 150 200

Iteration

800

1000

1200

1400

1600

1800

2000

2200

2400

E
n
e
rg
y

0 200 400 600 800 1000 1200 1400
Time

(a) (b)

Fig. 11. Evolution of the energy of (a) the Morphologi-
cal GAC and the continuous GAC in the starfish experi-
ment and (b) the Morphological ACWE and the continu-
ous ACWE in the lakes experiment. The blue continuous
line plots the energy versus the number of iterations for
the morphological methods. The green dashed line plots
the energy versus the time for the continuous methods.

present in the GACmodel. Moreover, they both converge
to nearly the same energy value.

We also validate our model with a 3D image stack
from the area of neuroscience. In this experiment we can
evaluate the morphological evolution of a surface in 3D
space. We use a section of cortex tissue captured with
a confocal microscopy corresponding to the 3D image
of a dendrite. A small 2-sphere is manually placed in
the center of the image. Then, the 3D Morphological
ACWE evolves the surface according to the contents of
the image. Some steps of the evolution are depicted in
Figure 14(a). The final results are shown in Figure 14(b).

Finally, we also make a quantitative comparison of
the evolution achieved by the algorithms that we are

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 14

M
o
rp
h
.
A
C
W

E

it = 0 it = 100 it = 180

A
C
W

E

t = 0 t = 800 t = 1400

Fig. 12. Lakes segmentation. ACWE initialization u0 =
20 −

√
(x− 170)2 + (y − 80)2. Morphological ACWE ini-

tialization u0 = T
[
20−

√
(x− 170)2 + (y − 80)2 > 0

]
.

M
o
rp
h
.
A
C
W

E

it = 0 it = 50 it = 130

A
C
W

E

t = 0 t = 1800 t = 3200

Fig. 13. Europe night-lights. ACWE initialization u0 =
115−max{|x− 120|, 1.3 · |y − 92|}. Morphological ACWE
u0 = T [115−max{|x− 120|, 1.3 · |y − 92|} > 0].

evaluating. We use the Jaccard similarity coefficient to
quantify the comparison. Let u and v be two different
contours, and χu and χv be the set of cells inside the
contours, i.e., the set of cells such that u(x) > 0 and
v(x) > 0. The Jaccard similarity between u and v is

J(u, v) =
|χu ∩ χv|

|χu ∪ χv|
. (36)

It has value 1 when u and v are equal and 0 when
they do not share any cell. Table 2 shows the similarities
for the pairs of contours obtained in each experiment.
They are high (around 0.9) in most cases. In the starfish
experiment, however, the similarity is lower (0.64). An
inspection of Figure 10 reveals that the morphological
GAC fits more accurately the image while the numerical
approach loses details at the ends of the arms and in the
junctions.

6.3 Morphological turbopixels

Many computer vision algorithms work with percep-
tually meaningful entities of the image, obtained from
a low-level grouping of pixels, called superpixels [19],
[46]. Here we introduce the morphological turbopixels al-
gorithm, as an example of an intrinsically local contour

it = 0 it = 20

it = 60 it = 160
(a)

(b)

Fig. 14. Dendrite image stack. (a) Evolution
of 3D Morphological ACWE. The initialization is
u0 = T

[
10−

√
(x− 20)2 + (y − 100)2 + (z − 100)2 > 0

]
.

(c) Final result.

evolution application that provides a set of compact and
regular superpixels.

Turbopixels [19] compute a dense oversegmentation
of an image by growing curves from many seeds dis-
tributed throughout the image domain via a geometric
flow similar to the Geodesic Active Contours. Curves
emanating from different seeds are not allowed to merge
into a single curve. To meet this constraint, a homo-
topy preserving thinning is carried out, which gives the
skeleton of the area outside the curves, and partition the
image domain into one cell for each curve. The curves
are then confined to grow within their cell.

We have adapted the turbopixels to work with our
morphological GAC, leading to the morphological tur-
bopixels (see Algorithm 1). The homotopic thinning ap-
proach that we use in the steps 5 and 8 of Algorithm 1 is
a type of skeletonization that preserves the topology. To
this end, we use a variation of the flux-ordered thinning
algorithm [47] that ignores the condition of being an end-
point. The homotopic thinning computes a mask which
confines each curve in its own cell, as shown in Figure 15.
After several iterations, these cells will eventually be the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 15

Morphological methods Continuous methods
Experiment Processing time Iterations Processing time Iterations Speedup J

Breast nodule 0.79s 45 6.85s 268 8.67 0.87
Starfish (μ = 1) 2.46s 110 28.17s 864 11.45 0.64

Lakes 5.61s 180 21.90s 867 3.9 0.95
Europe 1.18s 130 17.10s 989 14.5 0.91

TABLE 2
Running times and number of iterations of the morphological methods vs. the continuous PDEs. Last columns show
the speedup gained by the morphological methods and the Jaccard similarity of the results between both methods.

superpixels. The morphological GAC with a mask be-
haves essentially like the standard morphological GAC,
but it does not allow that the evolving curves go into the
masked areas. Thus we avoid that curves growing from
different seeds merge. The extension from morphological
turbopixels to morphological turbovoxels, i.e., the three-
dimensional counterpart, is trivial.

Algorithm 1 Morphological turbopixels
Input: The separation among consecutive seeds s, num-

ber of iterations n and image I
1: Place seeds on a rectangular grid with step s
2: Perturb the seeds away from I high gradient regions

3: u ← binary level set with 1 in seeds locations and
0 everywhere else

4: for i ∈ {0, . . . , n− 1} do
5: B ← homotopic_thinning(u)
6: u← One iteration of morphological GAC of uwith

mask B and stopping criterion g(I)
7: end for
8: B ← homotopic_thinning(u)

Output: The boundaries of the superpixels B

Figure 16 shows some results obtained with the mor-
phological turbopixels in two images. The top image
belongs to the Berkeley database and allows qualitative
comparison with the standard numerical implementa-
tion in [19]. The bottom image diplays the results for
an Electron Microscopy (EM) image of a pice of brain
tissue.

7 CONCLUSIONS

This paper introduces new results relating Mathematical
Morphology and PDE approaches for image analysis.
We have introduced a new curvature morphological
operator valid for surfaces of any dimension. On the
basis of this new operator we approximate the numerical
solution of surface evolution PDEs by the successive
composition of morphological operators whose infinites-
imal behavior is equivalent to the terms in the PDE.
We have used this approach to provide morphological
implementations of the Geodesic Active Contour, the Active
Contours Without Borders and the Turbopixels algorithms.
The morphological approach has several advantages

(a)

(b)

Fig. 15. (a) The level set function u describes multiple
evolving curves. (b) Homotopic thinning gives a mask B
that confines each curve within its own cell. The morpho-
logical GAC with mask B will evolve the curves avoiding
that each curve passes through the walls of B.

over the numerical solution of the PDEs. The implemen-
tation is simpler and has fewer parameters. There are
no numerical instability issues and, since the level set
function is binary and does not represent a distance, it
requires no re-initialization.

The experiments conducted confirm that the solutions
obtained with the morphological methods are compa-
rable to those obtained with the numerical ones, with
the exception of narrow and elongated structures in
which the morphological approach better fits the im-
age. Morphological methods outperform their traditional
functional gradient descent numerical counterparts in
terms of stability and speed. In general, morphological

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 16

Fig. 16. Morphological turbopixels. (top) Image from the
Berkeley Database; (bottom) EM image of brain tissue.

algorithms are about one order of magnitude faster,
which makes them suitable for real-time applications
in resource-limited hardware such as tracking in mo-
bile devices, or for processing large images such as
those from EM imaging in neuroscience applications.
Moreover, the morphological approach could also bene-
fit from improvements devised to speed-up numerical
algorithms, such as the narrow band and multi-scale
implementations.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous re-
viewers for their valuable comments and constructive
suggestions. This research was funded by the Cajal Blue
Brain Project.

REFERENCES

[1] A. Blake and M. Isard, Active Contours. Springer, 1998. 1
[2] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour

models,” International Journal of Computer Vision, vol. 1, no. 4, pp.
321–331, 1988. 1

[3] O. Faugeras and R. Keriven, “Variational principles, surface evo-
lution, pdes, level set methods, and the stereo problem,” IEEE
Transactions on Image Processing, vol. 7, no. 3, pp. 336–344, mar
1998. 1

[4] N. Paragios and R. Deriche, “Geodesic active contours and level
sets for the detection and tracking of moving objects,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
pp. 266–280, 2000. 1

[5] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Tracking
deforming objects using particle filtering for geometric active
contours,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 29, no. 8, pp. 1470–1475, August 2007. 1

[6] A. Mishra, P. Fieguth, and D. Clausi, “Decoupled active contour
(dac) for boundary detection,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 33, no. 2, pp. 310–324, February
2011. 1

[7] C. Zimmer and J. C. Olivo-Marin, “Coupled parametric active
contours,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, pp. 1838–1842, 2005. 1

[8] N. Paragios and R. Deriche, “Geodesic active regions and level
set methods for motion estimation and tracking,” Computer Vision
and Image Understanding, vol. 97, no. 3, pp. 259 – 282, 2005. 1

[9] Y. Shi and W. C. Karl, “A real-time algorithm for the approxi-
mation of level-set-based curve evolution,” IEEE Transactions on
Image Processing, vol. 17, no. 5, pp. 645 –656, May 2008. 1, 2

[10] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Transactions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001.
1, 2, 7, 9, 13

[11] L. Vese and T. Chan, “A multiphase level set framework for image
segmentation using the mumford and shah model,” International
Journal of Computer Vision, vol. 50, no. 3, pp. 271–293, December
2002. 1

[12] B. Nilsson and A. Heyden, “A fast algorithm for level set-like
active contours,” Pattern Recognition Letters, vol. 24, June 2003. 1,
2

[13] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical
approaches to level set segmentation: integrating color, texture,
motion and shape,” International Journal of Computer Vision, vol. 72,
no. 2, pp. 195–215, April 2007. 1

[14] X.-F. Wang, D.-S. Huang, and H. Xu, “An efficient local chan-
vese model for image segmentation,” Pattern Recognition, vol. 43,
March 2010. 1

[15] C. Lenglet, J. Campbell, M. Descoteaux, G. Haro, P. Savadjiev,
D. Wassermann, A. Anwander, R. Deriche, G. Pike, G. Sapiro,
K. Siddiqi, and P. Thompson, “Mathematical methods for diffu-
sion MRI processing,” Neuroimage, vol. 45, no. 1, pp. S111–S122,
2009. 1

[16] C. Bibby and I. D. Reid, “Robust real-time visual tracking using
pixel-wise posteriors,” in Proc. European Conference on Computer
Vision, 2008, pp. II: 831–844. 1, 2

[17] P. Chockalingam, N. Pradeep, and S. Birchfield, “Adaptive
fragments-based tracking of non-rigid objects using level sets,” in
Proc. International Conference on Computer Vision, 2009, pp. 1530–
1537. 1, 2

[18] D. Mitzel, E. Horbert, A. Ess, and B. Leibe, “Multi-person tracking
with sparse detection and continuous segmentation,” in Proc.
European Conference on Computer Vision, 2010, pp. 397–410. 1

[19] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J.
Dickinson, and K. Siddiqi, “Turbopixels: Fast superpixels using
geometric flows,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 31, no. 12, pp. 2290–2297, December 2009.
1, 2, 14, 15

[20] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,”
International Journal of Computer Vision, vol. 22, no. 1, pp. 61–79,
1997. 1, 2, 7

[21] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and
A. Yezzi, “Gradient flows and geometric active contour models,”
in Proc. International Conference on Computer Vision, June 1995, pp.
810 –815. 1

[22] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formula-
tions,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988. 1, 3

[23] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer, 2003. 1

[24] J. Weickert, B. M. T. H. Romeny, and M. A. Viergever, “Efficient
and reliable schemes for nonlinear diffusion filtering,” IEEE Trans-
actions on Image Processing, vol. 7, pp. 398–410, 1998. 1

[25] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast
geodesic active contours,” IEEE Transactions on Image Processing,
vol. 10, no. 10, pp. 1467–1475, 2001. 1, 2

[26] R. Tsai and S. Osher, “Level set methods and their applications
in image science,” Comm. Math Sci, vol. 1, no. 4, pp. 1–20, 2003. 1

[27] G. Barles and P. E. Souganidis, “A New Approach to Front Prop-
agation Problems: Theory and Applications,” Archive for Rational

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 17

Mechanics and Analysis, vol. 141, no. 3, pp. 237–296, March 1998.
1

[28] Y. Shi and W. C. Karl, “Real-time tracking using level sets,”
in Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 34–41.
2

[29] Y. Pan, B. JD, and S. Djouadi, “Efficient implementation of the
Chan-Vese models without solving PDEs,” in 2006 IEEE 8th
Workshop on Multimedia Signal Processing, October 2006, pp. 350
–354. 2

[30] L. D. Cohen and R. Kimmel, “Global minimum for active con-
tour models: A minimal path approach,” International Journal of
Computer Vision, vol. 24, no. 1, pp. 57–78, August 1997. 2

[31] B. Appleton and H. Talbot, “Globally optimal geodesic active
contours,” Journal of Mathematical Imaging and Vision, vol. 23, no. 1,
pp. 67–86, July 2005. 2

[32] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran, and
S. Osher, “Fast global minimization of the active contour/snake
model,” Journal of Mathematical Imaging and Vision, vol. 28, no. 2,
pp. 151–167, June 2007. 2

[33] T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cremers,
“A convex formulation of continuous multi-label problems,” in
Proc. European Conference on Computer Vision, 2008, pp. 792–805. 2

[34] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, “An algorithm
for minimizing the mumford-shah functional.” in Proc. Interna-
tional Conference on Computer Vision, 2009, pp. 1133–1140. 2

[35] J. Morales, L. Alonso-Nanclares, J. R. Rodriguez, J. Defelipe,
A. Rodriguez, and A. Merchan-Perez, “Espina: a tool for the
automated segmentation and counting of synapses in large stacks
of electron microscopy images,” Frontiers in Neuroanatomy, vol. 5,
no. 18, 2011. 2

[36] P. Lax, “Numerical solution of partial differential equations,”
Math. Monthly, vol. 72, pp. 74–85, 1965. 2

[37] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, “Axioms
and fundamental equations of image processing,” Arch. Rational
Mech. Anal., vol. 16, pp. 200–257, 1993. 2, 4

[38] R. van den Boomgaard and A. Smeulders, “The morphological
structure of images: The differential equations of morphological
scale-space,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 11, pp. 1101–1113, November 1994. 2

[39] R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and
Applications. Springer Verlag, 2003. 2, 3

[40] F. Guichard, J. Morel, and R. Ryan, Contrast invariant
image analysis and PDE’s, 2004. [Online]. Available:
http://mw.cmla.ens-cachan.fr/~morel/JMMBookOct04.pdf 2, 3,
5

[41] F. Catté, F. Dibos, and G. Koepfler, “A morphological scheme for
mean curvature motion and applications to anisotropic diffusion
and motion of level sets,” SIAM Journal on Numerical Analysis,
vol. 32, no. 6, pp. 1895–1909, 1995. 2, 3, 4, 5

[42] L. Alvarez, L. Baumela, P. Henríquez, and P. Márquez-Neila,
“Morphological snakes,” in Proc. International Conference on Com-
puter Vision and Pattern Recognition, 2010, pp. 2197 – 2202. 2

[43] L. D. Cohen, “On active contour models and balloons,” CVGIP:
Image Understanding, vol. 53, no. 2, pp. 211–218, 1991. 8

[44] M. Sussman, P. Smereka, and S. Osher, “A level set approach
for computing solutions to incompressible two-phase flow,” J.
Comput. Phys., vol. 114, pp. 146–159, September 1994. 10

[45] S. Chen, B. Merriman, S. Osher, and P. Smereka, “A simple level
set method for solving Stefan problems,” J. Comput. Phys., vol.
135, pp. 8–29, July 1997. 10

[46] X. Ren and J. Malik, “Learning a classification model for segmen-
tation,” in Proc. International Conference on Computer Vision, vol. 1,
2003, pp. 10–17. 14

[47] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker,
“Hamilton-jacobi skeletons,” International Journal of Computer Vi-
sion, vol. 48, no. 3, pp. 215–231, July 2002. 14

Pablo Márquez-Neila received a BS in Com-
puter Science from the Universidad de Ex-
tremadura in 2006 and a MS in Artificial In-
telligence from the Universidad Politécnica de
Madrid (UPM) in 2008, where he is currently
completing his PhD. He has been member of the
Computer Perception Group of the UPM since
2008. His research interests lie in theoretical
and applied computer vision and related fields
in computer graphics. He has worked in medi-
cal imaging analysis and visualization, graphical

models for image processing and segmentation, and image registration.

Luis Baumela BS and MS, 1989, PhD, 1995,
all in Computer Science from the Universidad
Politécnica de Madrid. From 1989 to 1992 he
was an engineer at Telefónica’s R&D labs. Since
1997 he is Associate Professor of Computer Sci-
ence at the Facultad de Informática of the Uni-
versidad Politécnica de Madrid where he leads
the Computer Perception Group. His research
interests include image alignment, face image
analysis and medical imaging.

Luis Alvarez has received a M.Sc.in applied
mathematics in 1985 and a Ph.D. in mathe-
matics in 1988, both from Complutense Uni-
versity (Madrid, Spain). Between 1991 and
1992 he worked as post-doctoral researcher
at CEREMADE laboratory in the computer vi-
sion research group directed by Prof. Jean-
Michel Morel. Since 2000 he is full professor at
the University of Las Palmas de Gran Canaria
(ULPGC). He has created the research group
Análisis Matemático de Imágenes (AMI) at the

ULPGC. He is an expert in computer vision and applied mathematics.
His main research interest areas are the applications of mathematical
analysis to computer vision including problems like multiscale analysis,
mathematical morphology, optic flow estimation, stereo vision, shape
representation, medical imaging, synthetic image generation, camera
calibration, etc.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

