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Abstract—Emerging applications of computer vision and pattern recognition in

mobile devices and networked computing require the development of resource-

limited algorithms. Linear classification techniques have an important role to play

in this context, given their simplicity and low computational requirements. The

paper reviews the state-of-the-art in gender classification, giving special attention

to linear techniques and their relations. It discusses why linear techniques are not

achieving competitive results and shows how to obtain state-of-the-art

performances. Our work confirms previous results reporting very close

classification accuracies for Support Vector Machines (SVMs) and boosting

algorithms on single-database experiments. We have proven that Linear

Discriminant Analysis on a linearly selected set of features also achieves similar

accuracies. We perform cross-database experiments and prove that single

database experiments were optimistically biased. If enough training data and

computational resources are available, SVM’s gender classifiers are superior to

the rest. When computational resources are scarce but there is enough data,

boosting or linear approaches are adequate. Finally, if training data and

computational resources are very scarce, then the linear approach is the best

choice.

Index Terms—Computer vision, gender classification, Fisher linear discriminant

analysis.

Ç

1 INTRODUCTION

DEMOGRAPHIC classification, and in particular gender recognition,
is a research topic with a high application potential in areas such as
surveillance, face recognition, video indexing, and dynamic
marketing surveys. It has attracted the interest of researchers in
computer vision and pattern recognition for years [1], [2], [3], [4],
[5], [6], [7], SEXNET [5] being the first attempt to recognize gender
from faces. Solutions to this problem may be broadly grouped into
appearance-based approaches, and feature-based approaches. Appear-
ance-based approaches use the cropped, resized, and illumination
normalized texture of the whole face as a classification attribute.
On the other hand, feature-based approaches are based on
extracting a set of discriminative face features.

Moghaddam and Yang [1] introduced the best gender recogni-

tion algorithm in terms of reported classification rate. They

adopted an appearance-based approach with a classifier based

on a Support Vector Machine with Radial Basis Function kernel

(SVM+RBF) [1]. They reported a 96.6 percent recognition rate for

classifying 1,775 images from the FERET database using auto-

matically aligned and cropped images and a fivefold cross-

validation. Baluja and Rowley [2] report a bias in the previous

estimation caused by the existence of subjects with the same
identity in different folds. In the same experiment they achieved a
93.5 percent success rate using SVM+RBF with manual alignment
and a proper cross-validation.

Feature-based approaches use pixel-wise gray-level differences
[2], Haar-like wavelets [3], [6], multiscale filter banks [7], or Locally
Binary Patterns (LBP) [3], [4] to recognize the gender of a face.
Shakhmarovich et al. [6] achieved 79 percent and 79.2 percent
recognition accuracy in gender and ethnicity classification,
respectively, on a set of difficult images obtained from the Web.
They used Haar-like features within an AdaBoost-based approach,
which is several orders of magnitude faster than SVM. Baluja and
Rowley [2] used pixel-wise gray-level comparisons as weak
classifiers within an AdaBoost learning scheme. They used
manually aligned images from the Color FERET database “fa”
and “fb” galleries and achieved 94 percent recognition accuracy.
Their classifier is approximately 50 times faster than Moghaddan
and Yang’s SVM solution [1].

Recently, Mäkinen and Raisamo [3] performed a set of
experiments using 411 images (304 for training and 107 for
testing) from the FERET database. They compared appearance-
based, feature-based, aligned, and unaligned approaches, among
others. They got similar performance results for feature-based
AdaBoost and appearance-based SVM+RBF classifiers. In another
work [4] they experimented with different databases, classifier
combination, and face normalizations.

With the notable exception of [2], existing approaches to
gender recognition focus mainly on high-performance computer
systems. Emerging applications of video analysis in mobile
devices and networked computing have recently attracted
interest in the development of computer vision and pattern
recognition algorithms for resource-limited devices. Linear
classification techniques have an important role to play given
their simplicity and low computational requirements at runtime.
In this paper, we revisit and compare various linear classification
algorithms. We prove that, with a linear feature selection, these
approaches achieve results comparable to the best gender
classifiers based on SVM+RBF [1] and Boosting [2]. Moreover,
in the context of very limited data and computational resources,
they achieve the best generalization.

2 LINEAR DISCRIMINANT ANALYSIS (LDA)

Given a multiclass classification problem with c classes and
p sample points, fxigpi¼1, LDA provides a linear projection of the
initial samples onto a subspace of at most d ¼ c� 1 dimensions,
maximizing the ratio of the between-class and within-class
separation. The basis of the transformed subspace, fwigdi¼1, is
obtained by maximizing JðwÞ ¼

Pd
i¼1

w>i SBwi

w>
i

SWwi
, where SB and SW

are, respectively, the between-class and within-class scatter
matrices [8]. The maximum is given by the following generalized
eigenvalue equation: SBW ¼ SWWD, where W is a matrix whose
columns are wi and D is the diagonal matrix of eigenvalues. The
rank of matrix SB is at most c� 1 and, generally, so is the rank of
the LDA projection matrix, W.

In the following sections, we describe three linear dimension-
ality reduction techniques directly related to LDA, which we have
compared in our experiments.

2.1 LDA in the PCA-Transformed Subspace (I), PCA+LDA

When dealing with image classification problems, it is very
common to have fewer sample vectors (images) than features
(pixels). In such cases, the within-class scatter matrix SW is singular
and the LDA projection matrix W cannot be computed. Since the
covariance matrix of the full sample set is Sm ¼ SB þ SW , an
alternative solution is given by using Sm instead of SW in the
previous eigenvalue equation [8]. In this case, performing Principal
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Universidad Politécnica de Madrid, Campus de Montegancedo s/n,
28660 Boadilla del Monte, Spain. E-mail: lbaumela@fi.upm.es.

Manuscript received 13 Feb. 2010; revised 13 Aug. 2010; accepted 22 Oct.
2010; published online 24 Nov. 2010.
Recommended for acceptance by M.-H. Yang.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-02-0097.
Digital Object Identifier no. 10.1109/TPAMI.2010.208.

0162-8828/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society



Component Analysis (PCA) retaining only the eigenvectors
associated with nonzero eigenvalues and then performing LDA
in the transformed PCA subspace is equivalent to performing LDA
in the original subspace [9]. Thus, when eigenvectors associated
with nonzero eigenvalues are discarded, PCA+LDA will not be
strictly equivalent to the global LDA counterpart. From now on,
we will call this method PCA+LDA, irrespective of the eigenvec-
tors chosen from the PCA step.

In most of our cases, we will have more training samples than
pixels in the sample images. Therefore, all of the eigenvalues from
PCA will be nonzero. Depending on the amount of training data,
the classifier performance decreases when retaining all eigenvec-
tors associated with nonzero eigenvalues (see Figs. 5 and 6). Thus,
a crucial step here is to choose which PCA eigenvectors to keep so
that no discriminant information is lost.

We select the dimension of the subspace resulting from the PCA
step using a cross-validation scheme instead of the usual approach
based on retaining the eigenvectors accounting for a given
percentage of the variance (usually 95 percent or 99 percent) [11].
We sort PCA eigenvectors in descending eigenvalue order. We
then perform cross-validation and select the dimension with the
best performance. In Algorithm 1, N is the number of pixels in an
image, X is a matrix with one sample image per column, L is the
vector with the corresponding class labels (male or female), PPCA is
the PCA basis matrix sorted in decreasing order of eigenvalues, I is
the PCA mean, R is the best classification rate obtained, and K is
the best dimension.

Algorithm 1. PCA+LDA training

Input: X;L

Result: R;K

1: R( 0 {Initialize best classification rate to 0}

2: K ( 1 {Initialize best feature number to 1}

3: Divide X in l folds F ¼ fX1; . . . ; Xlg.
4: for j ¼ 1 to N do {l-fold cross-validation with j features

retained before LDA}

5: for i ¼ 1 to l do

6: Xtest ( Xi {Test with fold i}

7: Xtrain ( F � fXig {Train with the rest of folds}

8: [PPCA; I] ( PCA(Xtrain) {Principal Component

Analysis}

9: B is assigned the first j columns in PPCA.

10: Y( B>ðXtrain � ½I . . . I�Þ {Projection onto PCA

subspace}

11: PLDA ( LDAðYÞ {Fisher Linear Discriminant Analysis}

12: Z( PLDAY {Projection onto LDA subspace}

13: C ( trainBayesianClassifier(Z;L)

14: Ztest ( PLDAB
>ðXtest � ½I . . . I�Þ

15: ri ( classify(C, Ztest;L)

16: end for

17: Rj ( 1
l

Pl
i¼1 ri

18: if Rj > R then

19: R( Rj

20: K ( j

21: end if

22: end for

We will show in the experiments that this feature selection
process is essential to getting state-of-the-art performance with the
PCA+LDA procedure. This is not the first time that this kind of
approach has been used in the literature. In their comparison of
PCA and LDA approaches for appearance-based object recogni-
tion, Martı́nez and Kak also select the best PCA dimension prior to
performing LDA [12].

2.2 LDA in the PCA-Transformed Subspace (II),
PCA-M+LDA

An alternative way of selecting the PCA eigenvectors is to sort them
according to their agreement with matrix SB [10]. In this case, we
give more importance to the eigenvectors that are parallel to the
subspace spanned by the class means. The importance of an
Sm eigenvector, uj, is then given by Ij ¼

Pq
i¼1ðu>j viÞ2, q ¼ rankðSBÞ,

where vi are the eigenvectors of SB [10].
With PCA-M+LDA we denote the algorithm that performs

PCA, then sorts the PCA eigenvectors by decreasing value of Ij,
chooses the first k eigenvectors in the new order, and finally
performs LDA. In the PCA-M+LDA case, our training procedure is
as shown in Algorithm 1 but with an important difference: After
PCA (line 8) in PCA-M+LDA, we sort PPCA columns by decreasing
value of Ij.

2.3 LDA in the ICA-Transformed Space (ICA+LDA)

ICA tries to explain the original sample data in terms of
statistically independent random vectors. Let X be a data matrix
whose columns are the sample vectors. Linear ICA algorithms find
a matrix P that projects X onto an independent components
subspace, S ¼ PX.

Most researchers using ICA-based results use either FastICA or
Infomax algorithms [13]. These procedures search for vectors vi,
rows of matrix P such that the rows of S have maximally non-
Gaussian distribution and are mutually (approximately) uncorre-
lated. A simple way to achieve this objective is to make PCA, retain
only eigenvectors with nonzero eigenvalues, whiten, and then
search for a rotation matrix R; S ¼ R>��1B>X ¼ R>Z, where Z are the
whitened PCA projections of sample vectors in X and B are the
eigenvectors associated with the � diagonal matrix with nonzero
eigenvalues [13].

Abusing the concept of independence, some approximations
use the independent components obtained by ICA as a basis for
expanding a linear subspace [14]. We have used Algorithm 1 to
train the FastICA+LDA classifier. The only difference is that now
lines 8 to 10 use FastICA to estimate projection matrix P, selecting
the first j rows of P and projecting Xtrain onto the first j FastICA
features to obtain matrix Y.

3 EXPERIMENTS

In this section, we evaluate the performance and compare the
above linear approaches with the best nonlinear classifier,
SVM+RBF, as used by Moghaddam and Yang [1], and Baluja
and Rowley’s [2] pixel-wise boosting-based algorithm.

We have used one nonpublic database from the Universidad
Católica del Norte (UCN) in Chile, termed the UCN database, the
Color FERET database [15], the Productive Aging Lab Face (PAL)
database from the University of Texas at Dallas [16], and the same
training and test images sets used by Mäkinen and Raisamo [3]
from the Gray FERET database:

. The UCN database is a nonpublic database consisting of
mug-shot images (one per individual) of students and
academics from UCN. They have been acquired with
different imaging devices under different resolutions,
illumination conditions, and in which faces are not strictly
frontal (see Fig. 1). There are 10,700 individuals, 5,646 male
and 5,054 female. In our experiments, we use 5,628 male
and 5,041 female images since the face detector missed
some faces when preparing the data.

. The Color FERET Face database is a publicly available
resource for face analysis research. It has multiple images
of 994 individuals, 591 male and 403 female. For our
experiments, we use one image per subject from the FERET
database fa gallery. From this gallery we only employ
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402 female images since the face detector missed one
female face (see Fig. 2).

. The PAL Database consists of frontal pictures of 576 in-
dividuals. The right profile and some facial expressions are
also available for some subjects. There are 219 male and
357 female subjects divided into four groups depending on
their age: 18-29, 30-49, 50-69, and 70-93 (see Fig. 3).

. The subset of the Gray FERET database used by Mäkinen
and Raisamo [3] in their out-of-plane face rotation
sensitivity analysis experiment1consists of 304 frontal
images for training and 1,008 for testing organized in
9 different orientations from +60 to -60 degrees.

Before classifying we crop and resize images to 25� 25 pixels
using OpenCV’s2 2.0.0 face detector, which is based on [17]. For
manual alignment we use the location of the eyes and mouth
center. Additionally, we perform a histogram equalization in order
to gain some independence from illumination changes. Finally, we
also apply an oval mask to prevent the background from
influencing our results (see Fig. 4).

In all LDA-based experiments, we use a simple Bayesian
classifier assuming Gaussian distribution (see Fig. 10 to verify that
this is a reasonable assumption). For the SVM+RBF tests, we train
the classifier using the Sequential Minimal Optimization [18]
algorithm implemented in WEKA Explorer.3 We search for the
best C (trade-off between margin and training error) and gamma
(RBF radius) parameters in a grid of different combinations. In all
databases, except for UCN, C varies from 1 to 991 in steps of 10
(99 samples) and gamma varies from 0.001 to 0.1 in steps of 0.001
(100 samples). For UCN, C took values in {1, 10, 100, 1,000} and
gamma in {0.001, 0.002, 0.004, 0.006, 0.008}. In Table 1 we provide
the best parameters for each database. We implemented the pixel-
wise boosting algorithm of Baluja and Rowley as described in their
paper, using 1,000 weak classifiers chosen evaluating 1 percent of
all possible weak classifiers [2]. We called it Baluja1000. Addition-
ally, for comparison purposes, we also trained a Baluja625
classifier, which matches the computational complexity of the
linear classifiers.

3.1 Single Database Tests

In the first experiment, we perform single-database tests using a
five-fold cross-validation scheme. In Table 1, we show the results
of this experiment. All face images are unaligned except for the

FERET database, for which we perform both unaligned (FERET

column) and manually aligned (FERET Align column) tests.

Subjects with the same identity are kept in one fold since we use

only one image per subject.
In the following paragraphs, we discuss these experimental

results:

. Manually aligned versus unaligned faces. One first
obvious result from Table 1 is that we have not found a
significant performance difference between manually
aligning the images or just classifying them after detection.
This confirms similar previous results in [3]. This is due to
precision achieved by the face detector. On average, it
achieves an accuracy of about half a pixel for frontal 25�
25 resized faces from FERET fa gallery.

. LDA classification. LDA achieves in FERET a 77.68 percent
success rate. We did not test LDA on PAL because Sm is
rank deficient, given the small number of samples. This
experiment confirms the poor results obtained by Moghad-
dam and Yang [1].

On the other hand, LDA on the UCN database, with
around 10,000 images, provides a success rate of
92.65 percent. We can conclude that, because of the curse
of dimensionality, 993 images do not provide enough
information for LDA to find the right projection from a
625 dimensional space. Increasing the number of training
images to 10,000 (UCN database) provides enough data
for LDA to become a competitive classifier.

So, when the dimensionality of the problem is high
(625 dimensions in our case) compared to the number of
samples (994), LDA does not provide a good solution, even
if Sm is a full rank matrix.

. PCA+LDA classification. We have tested both PCA+LDA
and PCA-M+LDA using Algorithm 1 to select the dimen-
sion of the PCA subspace. In Table 1 we report the results
achieved by this iterative procedure. With a linear feature
selection before LDA, PCA+LDA and PCA-M+LDA
achieve a performance competitive with the state-of-the-
art. PCA-M+LDA and PCA+LDA plots in Fig. 5 confirm that
when the size of the database is large (UCN) the
performance of the classifier does not depend so much on
the dimension of the intermediate PCA subspace. In this
case, we can safely select all dimensions of this subspace.
This is equivalent to performing LDA on the original data.

The reason for the PCA-M+LDA and PCA+LDA
algorithms being so successful is that they diminish LDA’s
curse of dimensionality by selecting only PCA’s most
discriminant directions. In our problem, PCA-M+LDA
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Fig. 1. Some cropped and resized images, after face detection, from the UCN
database.

Fig. 3. Some cropped and resized images, after face detection, from the PAL
database.

Fig. 2. Some cropped and resized images, after face detection, from the Color
FERET database, fa gallery.

Fig. 4. The first row displays raw cropped face images using the face detector. The
second shows equalized and masked images.

1. Available online at http://www.cs.uta.fi/hci/mmig/vision/
datasets/.

2. http://opencv.willowgarage.com.
3. http://www.cs.waikato.ac.nz/ml/weka.



and PCA+LDA perform equally well. This is because the

most discriminant eigenvectors are the ones with the

largest variance. This makes sense since we are dealing

with constant lighting, neutral expression, and frontal face

images. In this case, most variability comes from person-

to-person differences and thus gender appearance varia-

tion explains most of the variance in the data. Note that, in

general, this might not be true.

In conclusion, with an appropriate feature selection

procedure LDA can achieve a competitive classification

performance and overcome the curse of dimensionality.
. ICA+LDA classification. We now analyze the result of

estimating the intermediate subspace using ICA instead of
PCA. Again using Algorithm 1, we estimate the dimension

of this subspace. In Table 1 and Fig. 6 we show the results
of this experiment. Not surprisingly, the results for
ICA+LDA and PCA+LDA are very similar. Moreover,
the ICA+LDA and PCA+LDA approaches have the same
classification rates when the number of selected features is
large enough (see Fig. 7). These results were theoretically
predictable. Since FastICA is equivalent to a whitened PCA
plus a rotation [13] and LDA is a rotation invariant
dimensionality reduction technique, then PCA+LDA and
FastICA+LDA are equivalent when there is no feature
selection.

Jain and Huang reported a 99.3 percent success rate in
an experiment using FastICA+LDA and a euclidean
classifier [14]. They tested their approach with 500 images
from the FERET database. For training they used
200 images (100 male and 100 female). The remaining
300 images (150 male and 150 female) were used for
testing. A possible reason for the discrepancy between
their result and ours is the small size of the database used,
which may have biased their evaluation.

The last issue considered in this set of tests is the sensitivity of
classifiers to out-of-plane face rotation. We use the 304 frontal face
images from Mäkinen and Raisamo’s subset of the Gray FERET
database for training. We test with the set of 1,008 images taken at
different horizontal face orientations. For this experiment we
manually align the faces since, for extreme angles, the face detector
misses most of them. In Fig. 8, we show the results of this test. The
asymmetry of the plot is caused by some training images being
slightly rotated toward the negative angles. On average, all
methods perform similarly, showing a higher performance on
the negative rotation side. Boosting-based algorithms perform
slightly better for the negative range, whereas linear methods are
marginally ahead in the positive.
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TABLE 1
Classification Rates and Standard Deviation for Single Database Five-Fold Cross-Validation Tests

In the SVM and LDA rows, respectively, we show in parentheses the number of support vectors and the number of features kept before performing LDA. For SVM we
also show the best C and � parameters.

Fig. 5. Classification performance (variable Rj in Algorithm 1) as the dimension of
the intermediate PCA subspace increases for (a) PCA+LDA and (b) PCA-M+LDA.

Fig. 6. Classification performance (variable Rj in Algorithm 1) as the dimension of
the intermediate ICA subspace increases for ICA+LDA.



On average, the performance of all classifiers in single-database

experiments is very similar. The most significant difference is

achieved by SVM+RBF on the large UCN database.

3.2 Cross-Database Tests

In the second experiment, we perform cross-database classification

tests. With this experiment we get an idea of the generalization

capabilities of the classifiers. We use all of the images from one

database for training and the images from another for testing. Here

we use the classifier parameters obtained in the single database

experiments. Table 2 shows the results.
FERET and UCN databases have similar demography but

different acquisition conditions. Cross-database tests with FERET

and UCN provide results analogous to the single-database tests

discussed in Section 3.1, with an overall decrease in performance

most noticeable when training with FERET and testing with UCN

(FERET/UCN), caused by the more general acquisition conditions

in UCN. Here all classifiers have close performances, SVM+RBF

and Baluja1000 being marginally better, respectively, when

training with a large (UCN/FERET) and a small database

(FERET/UCN). Also, FERET/UCN results are quite poor for the

LDA classifier. However, when training with UCN and testing

with FERET (UCN/FERET), the LDA approach can compete with

the other classification procedures. This confirms our previous

single-database experiment.
Cross-database tests involving PAL, FERET, and UCN are more

demanding in terms of classifier generalization capabilities since

the demography in PAL is quite different from that in the FERET

and UCN databases. It includes people from more ethnic groups

and a broader range of ages (see Figs. 1, 2 and 3). FERET and UCN

are demographic subsets of PAL. If the training database is large,

the SVM+RBF classifier clearly achieves the best performance

(UCN/PAL). When training with small databases (PAL and

FERET), performance differences become narrower. In the more

challenging cases, which are FERET/PAL, given the narrow

demography and controlled acquisition in FERET, and PAL/

UCN, for the general acquisition conditions in UCN, SVM+RBF

performance is slightly behind boosting and two-stage linear

classifiers, the latter being marginally ahead in these cases. In the

PAL/FERET test, SVMs and boosting approaches perform margin-

ally better, in spite of PAL being a small database; this is possibly

due to the broad demography in PAL.
These experiments, together with the sensitivity analysis in

Section 3.1, seem to suggest that linear classifiers have the best

generalization in situations where training data is very scarce and

with low variability (e.g., narrow demography). To confirm this

hypothesis we have performed one more experiment training

with Mäkinen’s FERET pose-ba gallery, which contains 112 frontal

face images (56 male and 56 female), mostly Caucasian, and

testing with PAL and UCN databases. We trained the classifiers

using the same procedure as in Section 3.1. Classifier parameters

are now, SVM+RBF (C ¼ 10, � ¼ 0:007), PCA+LDA (37 features),

PCA-M+LDA (80 features). In this case, see Mak-ba/PAL and
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Fig. 8. Sensitivity analysis to out-of-plane face rotation.

TABLE 2
Classification Rates for Cross-Database Experiment (Train DB/Test DB)

Fig. 7. Comparison of PCA+LDA and ICA+LDA for (a) the FERET and (b) the UCN
databases.



Mak-ba/UCN columns in Table 2, performance differences among
classifiers are larger. SVM+RBF has the lowest performance.
PCA+LDA is clearly ahead of the rest.

We now analyze some classification errors in the FERET/PAL
experiment (see Fig. 9). They are caused mainly by ages or
ethnicities not present in the training data. For example, since
FERET has few elderly female images, all elderly samples from PAL
are classified as male (see the first two images in the second row of
Fig. 9). Also, most images in FERET are from white Caucasians.
Consequently, it is more likely that samples in PAL belonging to
other ethnicities are wrongly classified (see Fig. 9). Finally, even
with the ethnicities and ages present in the training data, there are
faces that are difficult to classify (see the first two images in the first
row or the third image in the second row of Fig. 9).

3.3 Computational Issues

Performance in terms of classifier success is not the only
important issue in face analysis. Computational cost is also a
key factor when processing millions of images [2] or when
implementing these algorithms in a computing device such as a
mobile phone or an IP camera. In terms of computational cost,
Baluja et al.’s [2] pixel-wise boosting algorithm and the linear
classifiers are the fastest gender recognition algorithms reported
so far. Baluja’s algorithm uses pixel-wise gray-level comparisons,
a feature that is very fast to compute. For example, classifier
Baluja625 would make on the order of 625 operations to classify
one image. In the linear classifier case, the size of the projection
matrix for the two-stage algorithms is independent of the
intermediate PCA dimension. PCA+LDA and PCA-M+LDA
projection matrices are, in fact, a single row vector with as
many components as the number of image pixels. Classification
is the result of thresholding the projected image, which results
also in 1� 25� 25 ¼ 625 operations to classify one image.

Classification with an SVM+RBF classifier is a great deal
more demanding in terms of computer operations. If we
consider the smallest number of support vectors used by the
SVM+RBF classifier in Table 1, 247 support vectors, SVM+RBF
needs to make 247� 25� 25 ¼ 154;375 pixel operations to
classify one image. For the UCN database the number of pixel
operations is 1;891� 25� 25 ¼ 1;181;875, orders of magnitude
larger than linear and boosting approaches.

4 CONCLUSIONS

In this paper we have reviewed the state-of-the-art in gender
recognition. In single-database experiments, our work confirms
previous results reporting similar classification accuracies for
SVMs and pixel-wise boosting algorithms [2], [3], the former being
slightly better when training with a large database. We have
proven that linear techniques may also achieve similar accuracies
in this context. We have experimentally confirmed that linear
techniques based on ICA+LDA are equivalent to PCA-M+LDA
and PCA+LDA. This is not surprising since most algorithms for
ICA are equivalent to whitened PCA plus a rotation.

We have experimentally proven that single-database experi-
ments are optimistically biased since the demography and acquisi-
tion conditions are usually very similar in the images of a database
and they have an important impact in the performance of the
classifier. Differences arise when classifiers are trained and tested
with different databases. If there are 10,000 or more training
samples, SVM+RBF is the best classifier. In the tough UCN/PAL test,
it roughly achieves 80 percent success, at the expense of requiring
106 pixel operations to classify one image. If, on the other hand, we
have time or computational constraints, boosting and linear
approaches roughly achieve 75 percent success for this experiment
with only 625 operations. If there are fewer training data (500 to
1,000 samples) with a broad demography, then all tested approaches
achieve similar classification accuracies. Finally, if training data is
scarce (300 images or less) and with a narrow demography, the
PCA+LDA approach is the best choice. The success of simple linear
techniques in this context is possibly caused by the high
dimensionality of the input data space, which makes a kernelization
step to achieve linear separability unnecessary.

We have found experimental evidence that supports the
existence of a correlation between different demographic variables
such as gender, age, and ethnicity. When a gender classifier is
trained with a data set with limited demography (like the FERET
or UCN databases) and then tested with a data set with more
general samples (like the PAL database), the classification rate
drops significantly. Dependencies between gender estimation and
age [19] or ethnicity [20] have also recently been reported. New
venues for research on gender in particular or demographic
classification in general should take into account the relations
between gender, age, and ethnicity variables in order to improve
the classification across different age and ethnic groups.

Much research over recent years has focused on solving the
linear discriminant analysis problem when Sm or SW are singular
matrices, e.g., [21], [22], [23]. From our experiments we can
conclude that small sample size data can seriously compromise the
performance of the linear discriminant classifier, even if the
covariance matrices are not singular. We have experimentally
proven that choosing the correct dimension for the intermediate
subspace projection in a two-stage LDA algorithm improves the
performance.
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