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1 ESCET, Universidad Rey Juan Carlos
C/Tulipán s/n, 28933 Móstoles, Spain
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Abstract We introduce a system that processes a se-
quence of images of a front-facing human face and recog-
nises a set of facial expressions. We use an efficient appea-
rance-based face tracker to locate the face in the image
sequence and estimate the deformation of its non-rigid
components. The tracker works in real-time. It is robust
to strong illumination changes and factors out changes
in appearance caused by illumination from changes due
to face deformation. We adopt a model-based approach
for facial expression recognition. In our model, an im-
age of a face is represented by a point in a deformation
space. The variability of the classes of images associated
to facial expressions are represented by a set of samples
which model a low-dimensional manifold in the space
of deformations. We introduce a probabilistic procedure
based on a nearest-neighbour approach to combine the
information provided by the incoming image sequence
with the prior information stored in the expression man-
ifold in order to compute a posterior probability associ-
ated to a facial expression. In the experiments conducted
we show that this system is able to work in an uncon-
strained environment with strong changes in illumina-
tion and face location. It achieves an 89% recognition
rate in a set of 333 sequences from the Cohn-Kanade
data base.

1 Introduction

In recent years industry and academia have shown grow-
ing interest in the development of computer vision sys-
tems that can locate human faces, track their motion
and recognise their facial expressions. This interest is
based on the fact that this technology is a key compo-
nent in the development of advanced human computer
interaction systems.

⋆ Present address: Facultad Informática, Universidad Com-
plutense de Madrid. Ciudad Universitaria s/n. 28040 Madrid

One of the challenges of Computer Science is to make
computers that interact with humans in a natural way,
as humans interact with each other. Spoken language
is possibly one of the most natural ways of interaction,
but, unfortunately, it is ambiguous. This is why human
interaction is based on two channels [19]. The first one,
based on language, transmits explicit information. The
other, based on gestures and facial expressions, trans-
mits implicit information on how to interpret what is
transmitted through the explicit channel. The context
and the information provided by the implicit channel
are extremely important for computers to get a full un-
derstanding of what is actually transmitted in a conver-
sation. For example, the sentence “that will do” uttered
by a customer could be interpreted by an Internet sales
software agent as a request for more information, if the
customer has a facial expression conveying inquiry or
concern, or as a confirmation of a purchase if the cos-
tumer nods. The introduction of emotive icons in email
messages is also a recent example of the necessity of im-
plicit information in an explicit message.

An enormous body of research and important achieve-
ments have been made over the last forty years within
the natural language and speech recognition research
communities on developing computer systems capable
of decoding the explicit channel [39]. On the other hand,
the decodification of the implicit channel has not re-
ceived much attention until more recently [47,19]. It is a
challenging problem, since it is associated to the under-
standing of a person’s intentions and emotions and re-
quires close collaboration between computer vision, pat-
tern and speech recognition, psychology and linguistics.
Some systems use physiological signals [49] as raw in-
put for emotion classification although most systems are
based on audiovisual information [1] because of the non-
invasive nature of this signal. In this paper we describe
a system that boosts several state-of-the-art aspects of
decoding the implicit channel from a computer vision
perspective.
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For over thirty years Paul Ekman and his colleagues
have studied human facial expressions and their rela-
tion to emotions [23]. They suggest that there is evi-
dence to support the existence of six primary emotions,
which are universal across cultures and human ethnici-
ties [24]. Each emotion possesses a distinctive prototypic
facial expression. These basic emotions are joy (jo), sur-
prise (su), anger (an), sadness (sa), fear (fe) and disgust
(di). Recognising all or a subset of these prototypic fa-
cial expressions from images has been a topic of research
in computer vision and pattern recognition for the last
decade [52,65,25,11,44,17,16,5,63].

In this paper we describe a system that tracks the
rigid motion of a front-facing human face in real-time,
while estimating the deformation of its non-rigid ele-
ments. The descriptors representing the non-rigid defor-
mation of the face are used to estimate the facial expres-
sion. Our work focuses on both, the use of an efficient
non-rigid face tracker, robust to strong changes in the
scene illumination, and the construction of a classifier to
probabilistically recognise prototypic facial expressions
in video sequences.

Tracking a human face is a challenging problem be-
cause the face is a deformable low-textured object and
because its visual appearance changes dramatically from
one person to another and in the presence of occlusions,
changes in illumination or pose. In this paper we adopt a
model-based procedure for tracking. In our approach the
appearance of a face is represented by the addition of two
approximately independent linear subspaces. The first
subspace models the deformations of the face caused by
facial expressions. The second represents the variations
in facial appearance caused by changes in the scene illu-
mination. The tracker presented here is simple, efficient,
robust and user dependent. All the information to be
provided to particularise this tracker for a new user is
a front-facing picture of the user wearing more or less a
neutral expression.

We also adopt a model-based approach for facial ex-
pression recognition. By tracking a set of 333 image se-
quences from 92 different users from the Cohn-Kanade
data base [32], we build a user-and-illumination-inde-
pendent global representation of all facial expressions.
In this model, an image of a face is considered as a
point in an n-dimensional space of deformations (n is
the number of face tracker parameters ). The variabil-
ity of the classes of images associated to the prototypic
facial expressions are represented by a set of samples
that model a low-dimensional manifold embedded in the
n-dimensional space of deformations. Pictures represent-
ing similar expressions are mapped to nearby points on
the manifold. An image sequence becomes a path in the
space of deformations. In order to recognise the facial
expressions in the sequence we introduce a probabilis-
tic procedure based on a nearest-neighbour approach to
combine the information provided by the image sequence
with the prior information represented in the manifold.

For each prototypic expression we estimate a posterior
probability, given the images in the sequence and the
manifold of the expression. At a given time instant, the
most likely expression is given by the maximum of these
posterior probabilities.

In the experiments section we show that this system
achieves recognition results in the Cohn-Kanade image
data base similar to the best state-of-the-art systems.
Moreover, our system is able to work in an unconstrained
environment, with strong variations in illumination and
fast and large in-plane and small out-of-plane rigid head
motion.

The rest of his paper is organised as follows. In the
following section we present related work. In section 3
we describe the face detection and tracking algorithm.
The manifold of facial expressions and the expression
recognition procedures are described in sections 4 and 5
respectively. In section 6 we describe some of the ex-
periments that we have conducted on this system, and,
finally, in section 7 we draw conclusions.

2 Related work

The problem of facial expression recognition can be di-
vided into three subproblems: face detection, discrimina-
tive information extraction and expression classification.
Face detection aims at locating faces in complex scenes
and cluttered backgrounds. Video-based facial expres-
sion recognition techniques use face trackers to locate
the face in each image in the sequence. In this case face
detection algorithms are used to start-up the tracking
procedure or to recover the tracker from a complete loss.
Once the position of the face in an image has been esti-
mated, it is analysed to extract discriminative informa-
tion that will subsequently be used to classify the facial
expression. Different facial expression recognition algo-
rithms have been introduced in the literature depending
on the discriminative information extracted from the im-
age and the classification procedure used (see [45,26] for
a comprehensive survey). Here we will review the algo-
rithms that are most closely related to our work. We
will not address the problem of face detection [54,62,
48], since it has traditionally been treated as a separate
problem from facial expression recognition.

Facial expressions are generated by contractions of
facial muscles that deform facial elements such as eye-
lids, eyebrows, nose, lips and skin texture. Feature-based
approaches to facial deformation estimation extract dis-
criminative information about the deformation of these
facial elements from a discrete set of locations in the
face. Initial feature-based approaches used make-up em-
phasised contours of eyebrows and lips [6], the corners
of mouth, eyes and nostrils [28], colour markers [42] or
the geometrical distribution of a set of fiducial points on
the face [69]. Other approaches used a set of geometri-
cal features on lips, eyebrows, cheek and furrow [59] or
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applied knowledge-based systems to reason about such
features [46]. In a more recent paper, face line edges are
used as features in a static face [27]. Many alternative
attempts have focused on optical flow analysis [37,25] es-
timated in textured areas [52,65] or as local parametric
models of motion [11].

Model-based approaches establish a set of modes of
face deformation based on anatomically [58] or statisti-
cally [33] motivated data. An evolution of the statistical
approach are the 2D [18] and 3D [12] shape+texture
linear models. The deformation of these models is esti-
mated from the motion of the face’s contours [58], from
optical flow [20] or from the sum of squared differences
of image gray values [50,38,41]. More recently 3D prim-
itive surface description features have also been used for
expression recognition from range data [63].

Other methods estimate facial motion or deforma-
tion from the analysis of pixel gray level values on face
areas. This is the case of Gabor filters, which are robust
to illumination changes and detect face edges on multi-
ple scales and with different orientations [69,36,21,4,5,
51], the Local Binary Patterns (LBP) [56] and Volumet-
ric Local Binary Patterns [70] and also of the eigenface
approaches [61].

Feature-based approaches only estimate the motion
of a discrete set of textured regions. Unless a dense set
of artificial markers is used, they provide sparse infor-
mation about the deformation of the face. This infor-
mation may not be adequate for modelling important
components of an expression, such as wrinkles and dim-
pling. In [69] Gabor filters were favourably compared
against discrete geometrical models and can be consid-
ered among the best discriminative procedures [5], but
their computation is both time and memory intensive.
Optical flow and eigenface techniques provide rich and
dense information about facial motion, but are easily dis-
turbed by lighting changes, registration inaccuracy and
motion discontinuities [67]. Shape+texture models can
be fitted in real-time to a deforming face [38] and may
factor out variations in illumination. Their major draw-
back is that they are difficult to build [3,12]. In this pa-
per we introduce a linear face model that models changes
in an image’s gray values caused by facial deformation
and illumination. It can be efficiently fitted to a target
image in real-time and can be automatically trained (see
section 3).

The discriminative information obtained by the above
techniques is fed into a classification algorithm to recog-
nise the facial expression. Two groups of classification
techniques have been used depending on whether the
discriminative information was extracted from a single
static image or from a sequence of images. Neural nets
are possibly the most popular classification procedure
among the static approaches [69,59]. Other procedures
used are Tree Augmented Näıve Bayes [17] and more
recently AdaBoost together with Support Vector Ma-
chines [5] and Linear Discriminant Analysis [63]. Hidden

Markov Models are the most common approach among
the procedures based on the analysis of an image se-
quence [34,17,44,66]. They have been extensively used
because of their ability to deal with time-dependent pa-
rameters and to provide time scale invariance. Radial
basis function neural nets with recurrent input [52] and
more recently Bayesian Networks [68,60] have also been
used as an alternative for modelling temporal informa-
tion.

The common limitation of the static approaches is
that they do not capture the dynamic information in
the facial expression. This is a key factor revealing in-
formation about the subject’s emotional state [7]. An
alternative dynamic approach consists of mapping facial
expression images to low dimensional manifolds associ-
ated to each primitive expression. The expression man-
ifold acts as a prior probability distribution on the ap-
pearance of a facial expression. A statistical procedure
is used to combine the prior information with the input
image sequence to get a posterior probability associated
to each primary facial expression. With this approach a
target sequence may be assigned to the facial expression
with maximum posterior probability or, alternatively, it
may be described as a probabilistic blending of the pri-
mary expressions, opening up the possibility of recog-
nising mixed expressions [16,56]. In this paper we take
this approach and introduce a procedure to build the ex-
pression manifold using the parameters produced by our
illumination-independent face tracker. We also introduce
a statistical approach for estimating the posterior prob-
ability of each expression. Our solution differs from pre-
vious related approaches [16,56] in various ways: a) our
manifolds are user independent, while those introduced
in [16] depended on the user’s identity; b) we use the pa-
rameters of an illumination-independent linear model as
discriminative information for expression classification,
whereas Active Wavelet Networks [31] in [16] and LBP
features [43] in [56] are respectively used; c) we use a
procedure for estimating the posterior probabilities dif-
ferent from those in [16] and in [56].

3 Face tracking and feature extraction

The system presented in this paper is able to robustly
track a human face and recognise the facial expressions
in an unconstrained environment with sharp illumina-
tion changes. To achieve this goal we use a robust track-
ing architecture that co-ordinates three trackers (see Fig.1).
It is organised in three levels of increasing complexity.
The execution policy is very simple: when a tracker per-
forms satisfactorily it tries to transfer control to a higher
level tracker; whenever a tracker detects a target loss, it
transfers control to a lower level tracker. At the low-
est level of the hierarchy we have a face detector, which
could be based on the popular haar-like features [62]
or on the simpler and less robust colour features [13]. At
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mid-level we use a template-based rigid face tracker [14].
This face tracker determines whether the skin-coloured
blob detected by the lowest level tracker is a front-facing
face and provides the start-up information for the higher
level tracker. At the highest level we have a subspace-
based tracker, which we describe in this section. A pre-
liminary version of this tracker appeared in [15].

Failure

Success

Success

Success

Failure

Failure

tracker
Template−based

tracker
Subspace−based

Face detector

Fig. 1 Tracking architecture

3.1 A linear and illumination-independent face model

Here we introduce a subspace-based model represent-
ing the variations in the appearance of a face caused by
changes in the facial expressions and the illumination of
the scene.

Let I(x, t) be the image acquired at time t, where
x is a vector representing the co-ordinates of a point in
the image, and let I(x, t) be a vector storing the bright-
ness values of I(x, t). Let us assume that the target
moves rigidly (with no deformation) between time in-
stants t0 and t, and that this motion can be described
by the motion model f(x,µ), µ being the vector of rigid
motion parameters. If there are no changes in the tar-
get appearance caused by the scene illumination, the
brightness constancy equation I(f(x,µt), t) = I(x, t0)
holds. If the face is now allowed to deform non-rigidly,
then we may write a new brightness constancy equation
I(f(x,µt), t) = Ī(x)+[Bdcd,t](x), where the non-rigid de-
formations have been modelled by a linear subspace with
basis Bd, mean value Ī(x) and linear deformation param-
eters cd,t. We denote the value of Bdcd,t for the pixel with
position x by [Bdcd,t](x). Finally, for a given rigid motion
µt and deformation cd,t, we could also model the illu-
mination of the face by including a new subspace with
basis Bi and linear illumination parameters ci, which rep-
resents all the possible illuminations of the mean face
Ī(x). So, the final brightness constancy equation is

I(f(x,µt), t) = Ī(x) + [Bici,t](x) + [Bdcd,t](x) (1)

= Ī(x) + [Bct](x) ∀x ∈ F ,

where B = [ Bi| Bd ], c⊤t = (c⊤i,t, c
⊤

d,t)
⊤, k = dim(ct),

and F represents the set of pixels of the face used for
tracking. Vectors ci and cd are respectively the illu-
mination and the deformation appearance parameters.
The assumption that illumination and deformation sub-
spaces are independent will simplify the training of the
model. Instead of having to use image sequences in which
all combinations of illuminations and facial expressions
are present, we will only have to process two image se-
quences: one with one facial expression and all illumi-
nations and another with one illumination and all facial
expressions. A related result for a rigid face moving in
3D space has been introduced recently [64].

To validate the above model we run the following ex-
periment. First we trained the tracker according to the
procedure described later in this section. Then we manu-
ally selected the parameters of two facial expressions and
two illuminations, and generated a set of intermediate il-
luminations and expressions by uniformly sampling the
parameter space between those locations. We repeated
this process three times. The results are shown in Fig. 2.
In spite of the model’s linearity, it correctly generates
the appearance of the faces.

3.2 Efficiently tracking the face

Tracking a face consists of estimating, for each image in
the sequence, the values of the motion, µ, and appear-
ance, c, parameters which minimise the error function

E(µ, c) = ||I(f(x,µt), t) − Ī − [Bct](x)||2. (2)

To make the previous minimisation robust to occlusions,
the quadratic error norm can be replaced by a robust one
(e.g. see [10,29]). The goal of the robust norm is to limit
the bias introduced in the minimisation by those pixels
for which |I(f(x,µt), t) − Ī − [Bct](x)| has an unusually
high value.

In general, it can be hard to minimise (2) as it de-
fines a non-convex cost function. Black and Jepson [10]
presented an iterative solution using a gradient descent
procedure and a robust metric with increasing resolution
levels. Their algorithm is not suitable for real-time per-
formance, since the Jacobian of each incoming image has
to be computed once on every frame for each level in the
multi-resolution pyramid. Similar problems have been
solved efficiently using Gauss-Newton minimisation [29,
38]. Hager and Belhumeur [29] introduced an efficient
procedure for minimising (2) in the context of invariance
to illumination changes by assuming ∇x[Bc](x) ≈ 0. This
assumption is a valid approximation when modelling the
illumination of a rigid head, but it cannot be reliably
used for tracking faces whose appearance changes due
to causes other than illumination. Here we introduce an
efficient procedure for minimising (2) without such a re-
striction.
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(a) (b) (c)

Fig. 2 Images generated using our appearance model: (a) From left to right images generated by lowering eyebrows, and from
top to down images generated varying illumination; (b) rolling eyes with a different illumination; (c) closing mouth, again
under different illumination.

To make Gauss-Newton iterations, I is expanded as
a Taylor series at (µt, ct, t), producing a new error func-
tion

E(δµ, δc) = ||Mδµ+ I(f(x,µt), t+ δt)− Ī−B(ct + δc)||2,
(3)

where M =

[

∂I(f(x,µ),t)
∂µ

∣

∣

∣

µ=µ
t

]

is the N×n (n = dim(µ))

Jacobian matrix of I.

3.2.1 Jacobian matrix factorisation One of the obsta-
cles for minimising (3) online, during tracking, is the
computational cost of estimating M for each frame. In
this section we will show that M can be factored into the
product of two matrices, M0Σ(µ, c), where M0 is a con-
stant matrix, which can be computed off-line.

Each row mi(µt, ct) of M(µt, ct) can be written as the
product,

mi(µt, ct) = ∇f I(f(xi,µt), t)
⊤fµ(xi,µt), (4)

where

∇f I(f(xi,µt), t)
⊤ =

[

∂I(y, t)

∂y

∣

∣

∣

∣

y=f(xi,µt
)

]

and

fµ(xi,µt) =

[

∂f(xi,µ)

∂µ

∣

∣

∣

∣

µ=µ
t

]

.

Taking derivatives w.r.t. x on both sides of (1) we get

∇f I(f(xi,µt), t)
⊤fx(xi,µt) = ∇xĪ(x) + ∇x[Bct](x),

(5)

where fx(xi,µt) =

[

∂f(x,µ
t
)

∂x

∣

∣

∣

x=xi

]

and ∇x denotes the

image gradient. Finally, from (4) and (5) we get a new
expression for M,

M(µ, c) =







B∇(x1)Cfx(x1,µ)−1fµ(x1,µ)
...

B∇(xN )Cfx(xN ,µ)−1fµ(xN ,µ)






, (6)

where B∇ is the gradient of the subspace basis vector and
C is a matrix storing c. Therefore M can be expressed
in terms of the gradient of the subspace basis vectors,
B∇, which are constant, and the motion and appearance
parameters (µ, c), which vary over time. If we choose
a motion model f such that Cfx(xi,µ)−1fµ(xi,µ) =
Γ(xi)Σ(µ, c), then M can be factored into

M(µ, c)=







B∇(x1)Γ(x1)
...

B∇(xN )Γ(xN )






Σ(µ, c)=M0Σ(µ, c), (7)

where M0 is constant matrix and Σ depends on c and µ.

3.2.2 Minimising E(µ, c) The minimum of (3) can be
estimated by least squares

[

δµ

δc

]

= −(M⊤J MJ)−1MJE ,

where MJ = (M|−B) and E = I(f(x,µt), t+ δt)− Ī−Bct.
Then, the change of rigid parameters may be estimated
as δµ = −(M⊤NBM)

−1M⊤NBE and that of non-rigid pa-
rameters as δc = (B⊤NMB)−1B⊤NME , where NB = I −
B(B⊤B)−1B⊤ and NM = I − M(M⊤M)−1M⊤. Since NB is a
constant matrix, we get an efficient solution for δµ fac-
toring M according to (7)

δµ = −(Σ⊤ΛM1Σ)
−1Σ⊤ΛM2E , (8)

where ΛM1 = M⊤0 NBM0 and ΛM2 = M⊤0 NB are constant
and can be precomputed off-line. A similar solution for
δc would not be efficient, since NM depends on (µ, c)
and would have to be recomputed for each frame in the
sequence. Nevertheless, an efficient solution can be ob-
tained from (3) by least squares, considering that δµ is
known

δc = ΛB [Mδµ + E ], (9)

where ΛB = (B⊤B)−1B⊤ is also constant and can be pre-
computed off-line.
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At first glance this result may appear to be similar to
the one presented in [38], section 4.1, and in [29]. There
are nevertheless three major differences: a) here model
parameters are additively updated, whereas in [38] the
update procedure is compositional; b) here subspace ap-
pearance parameters are incrementally estimated and
additively updated (ct+1 = δc + ct) and, consequently,
E includes a −Bct term, whereas in either [38] or [29]
there is no such term; c) here the derivatives of the sub-
space basis are part of the Jacobian, whereas in [38] and
in [29] they are not. As described in [29], this implies
that assumption ∇x[Bc](x) ≈ 0. This assumption is ap-
proximately true for a rigid face, but not for a face whose
appearance changes.

3.3 Subspace model building

One of the advantages of the appearance model intro-
duced here is that the deformation and illumination sub-
spaces are independent. A consequence of this property
is that they can be independently trained. This allows us
to simplify the training process. We do not need image
sequences with all facial expressions under all possible
illumination conditions. Now, each subspace is trained
with one video sequence. For the illumination subspace
we use a sequence in which a light orbits in front of
the target face wearing a neutral expression. For the de-
formation subspace we use a sequence captured with a
non-saturating frontal illumination in which the target
face wears different facial expressions. The face is located
and aligned in the first frame of both sequences. Then,
with a procedure similar to the one described in [35],
both sequences are independently tracked and both lin-
ear subspace models independently built (see Fig. 3).

Fig. 3 Some images used to build the deformation (top row)
and illumination (bottom row) subspaces.

3.4 The subspace-based tracking algorithm

In the implementation of our algorithm we use a RTS
(rotation, translation and scale) motion model, so µ =
(θ, tu, tv, s), and f(x,µ) = sR(θ)x+t, where x = (u, v)⊤,
t = (tu, tv)⊤ and R(θ) is a 2D rotation matrix. In this
case the factorisation in (7) results in

Γ(xi) =

[

I2l×2l,

[

−viIl×l uiIl×l

uiIl×l viIl×l

]]

,

Σ(c,µ) =





C 1
sR(−θ) 0

0 C

[

1 0
0 1

s

]



 ,

where Id×d is the d × d identity matrix, C is a matrix
storing c and l = k + 1, k being the dimension of the
linear subspace. For this model M0 and Σ have dimensions
N × 4l and 4l × 4 respectively.

The final factored modular tracking algorithm is shown
in Algorithm 1.

Algorithm 1 Subspace tracking algorithm

Off-line:
Compute and store M0 using B.
Compute and store ΛM2 = M⊤0 NB .
Compute and store ΛM1 = ΛM2M0.
Compute and store ΛB = (B⊤B)−1B⊤.

Online (one iteration):
Warp I(z, t + δt) to I(f(x, µ

t
), t + δt).

Compute E=[I(f(x, µ
t
), t + δt) − Ī − Bct].

Compute Σ(µ
t
, ct).

Compute H = Σ(µ
t
, ct)

⊤ΛM1Σ(µt
, ct).

Compute δµ = −H−1Σ(µ
t
, ct)

⊤ΛM2E .
Update µ

t+δt
= µ

t
+ δµ.

Compute δct+δt = ΛB [M0Σ(µ
t
, ct)δµ + E ].

Update ct+δt = ct + δct+δt.

4 The manifold of facial expressions

The classification procedure used for facial expression
recognition is based on a user-and-illumination-indepen-
dent facial expression model. This model is built by
tracking a set of sequences from the Cohn-Kanade data
base [32]. This data set consists of 485 image sequences of
97 university students ranging in age from 18 to 30 years.
65% were female, 15% were African-American and 3%
were Asian or Latino. Subjects began each display with
a neutral face and ended it at the expression apex. The
last image in each sequence is labelled with the FACS
Action Units (AUs) [59] that describe the expression.
We have manually translated these AUs into one of the
six prototypic expressions. To construct our manifold,
we selected 333 sequences of 92 subjects for which the
prototypic expression could be clearly identified.

We used the tracker introduced in section 3 to pro-
cess the sequences from the data base. The basis for the
deformation and illumination subspaces of the tracker
were obtained with the procedure and the training data
described in subsection 3.3. Although, as described in
section 3, our tracker was conceived to be dependent
on the identity of the subject in the training sequence,
we actually achieve a reasonable level of independence
just by switching the average image, Ī, in (1) for an
illumination-compensated picture of the new target sub-
ject wearing an approximately neutral expression. Let Is
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be the image of the new subject and ci,s = B⊤i (Is − Ī)
be the coefficients of the illumination of his or her face,
then Īs = Is − Bici,s is the new average image. The in-
tuition behind this is that, since Ī is very similar to a
picture of the subject (see Fig. 4), most of the informa-
tion in the face model related to the subject’s identity
is stored in the mean face, whereas the information re-
lated to the facial expression is stored in the deformation
subspace parameters cd. So, by just switching the mean
image, we have a model for the new subject. We can use
this new model to generate a picture of the new subject
wearing the expression represented by parameters cd (see
Fig. 5). Although the results are not visually perfect, we
will see in the experiments conducted in section 6 that
this new model is good enough to accurately track the
subject and identify his or her facial expressions. Finally,
to cancel other sources of appearance variation that are
not directly related to facial expressions, we eliminate
the eyes and the four corners of the face template from
the images in the data base (see Fig. 6).

Fig. 4 A picture of a subject (left image) compared to the
mean face of the model (right image).

Fig. 5 Resulting pictures (right column) generated by ex-
changing the mean image in the appearance model with the
image shown in the left column. In the middle column we
show the actual facial expression that we wanted to generate.
Upper and lower rows correspond respectively to individuals
52 and 111 in the Cohn-Kanade database.

Since the information associated to the appearance
of the facial expression is represented by parameters
cd, the expression in the sequence of images I1, . . . , Im

can be identified as a trajectory, cd,t, t = 1 . . . m in

Fig. 6 Face template used in the construction of the facial
expression manifold

the deformation subspace. Trajectories associated to the
same prototypic facial expression represent roughly sim-
ilar facial deformations and, consequently, will be lo-
cated in nearby positions in the deformation subspace.
Conversely, the trajectories of different expressions will
be located in different positions in the subspace. Fig. 7
shows the trajectories of two prototypic facial expres-
sions for three different subjects. We find that the final
part of the trajectories of the facial expressions, during
the apex, are clearly located in different positions in the
deformation subspace. The initial part of all trajectories,
associated to the neutral expression, merge in the centre
of the plot.

Our model of a prototypic facial expression is the
manifold that contains the set of trajectories of that ex-
pression in the data base. Since all expressions are de-
fined in the common linear space spanned by Bd, our
facial expression model is the union of the six manifolds
associated to each prototypic facial expression. All six
manifolds would merge in the centre of the model, since
the initial part of all image sequences corresponds to the
neutral expression, and would spread in six different di-
rections depending on the facial expression (see Fig. 8).
To diminish the size of the final expression manifold, we
only represent in it the last six images of each sequence,
because they form the most discriminative part of the
sequence.

The dimension of the linear subspace spanning the
modes of face deformation (dim(Bd)) is quite high com-
pared with the amount of data available for training (in
the experiments conducted in section 6 this dimension
is dim(Bd)=27). To avoid the curse of dimensionality
and achieve a better generalisation with our facial ex-
pression classification algorithm, we use a dimensional-
ity reduction procedure. Many dimensionality reduction
procedures have been introduced in the literature. They
can be basically divided into linear and non-linear tech-
niques. Non-linear approaches are the most general but
they require a lot of data and often their mappings are
defined exclusively on the training data [53,57,9]. Lin-
ear approaches, on the other hand, are less general, but
can be computed with a few data and are defined every-
where in the deformation subspace [8,30]. In [16] Chang
uses the non-linear Lipschitz embedding for dimension-
ality reduction, whereas Shan uses the linear Locality
Preserving Projections (LPP) [30] approach in [56]. For
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Fig. 7 Trajectories of two prototypic facial expressions (happiness and surprise) for three different subjects in the subspace
spanned by the three directions of Bd with the largest variance. We mark the samples in the happiness and surprise sequences
with crosses and circles respectively. The marks of each subject are joined by linear segments.

simplicity’s sake, and because it had previously yielded
good results [56], we decided to use a linear approach.
We chose Linear Discriminant Analysis (LDA) [22] be-
cause it performed best in our experiments. In Fig. 8
we show the facial expression model after reducing the
dimensionality to three dimensions using LDA.

Fig. 8 Facial expression model after reducing the dimen-
sionality to three LDA dimensions. Only the last six images
of each sequence are displayed.

5 Facial expression recognition

In this section we introduce a probabilistic facial expres-
sion recognition procedure. It combines the prior infor-
mation stored in the expression manifold with the incom-
ing data obtained from a temporally ordered sequence of
images of a face. We recursively estimate the posterior
probability of each prototypic facial expression given the
incoming image sequence and the set of sequences in the
expression manifold. The facial expression in the image
sequence is computed as the maximum of the posterior
probabilities.

Let I1, . . . , It be a temporally ordered image sequence
of a face wearing one or more facial expressions and
x1, . . . ,xt be the temporally ordered set of co-ordinates
of the image sequence in the facial expression subspace,
which we will denote X1:t. Let Gt = {g1, g2, . . . , gc} be a
discrete random variable representing the facial expres-
sion at time t and Xt be a continuous random variable
associated to the co-ordinates in the facial expression
subspace of the image acquired at time t. We will denote
by P (gi) ≡ P (Gt = gi) the probability that the discrete
random variable Gt takes value gi and by p(x) ≡ p(Xt =
x) the probability density function (p.d.f.) of the contin-
uous variable x at time t.

The facial expression g(t) at time instant t is ob-
tained as the maximum of the posterior distribution of
Gt given the sequence of images up to time t

g(t) = arg max
i

{P (Gt = gi|X1:t)}.
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Alternatively, the facial expression may also be described
as a probabilistic blending of the c primary facial expres-
sions.

We will estimate the posterior distribution using a
recursive Bayesian filter. For the first image in the se-
quence the problem can be immediately solved by

P (G1|x1) =
p(x1|G1)P (G1)

p(x1)
∝ p(x1|G1)P (G1), (10)

where P (G1) represents our prior knowledge of the prob-
abilities of facial expressions.

Now, if we have a temporal sequence of images X1:t,
we can then update Gt as

P (Gt|X1:t) =
p(xt|Gt,X1:t−1)p(Gt,X1:t−1)

p(X1:t)
.

If we assume that measurements depend only on the cur-
rent state, then p(Xt|Gt,X1:t−1) = p(Xt|Gt) and, hence,

P (Gt|X1:t) ∝ p(Xt|Gt)P (Gt|X1:t−1),

where P (Gt|X1:t−1) is the prediction of Gt, given the
data up to time instant t − 1. This probability can be
estimated as

P (Gt|X1:t−1) =

c
∑

i=1

P (Gt, Gt−1 = gi|X1:t−1)

=

c
∑

i=1

P (Gt|gi,X1:t−1)P (gi|X1:t−1).

If we assume that our system is Markovian (Gt depends
only on Gt−1), then

P (Gt|X1:t−1) =

c
∑

i=1

P (Gt|Gt−1 = gi)P (Gt−1 = gi|X1:t−1),

where P (Gt|Gt−1) is the expression transition probabil-
ity.

In contrast to previous approaches (e.g. [16,56]), which
try to estimate the probability of transition between two
facial expressions, we believe that all expression transi-
tions are equally probable and introduce the following
definition

P (Gt = gj |Gt−1 = gi) =

{

h if j = i
1−h
c−1 if j 6= i,

(11)

where 0 ≤ h ≤ 1 is a smoothing parameter that con-
trols how Gt−1 influences the predictions about Gt (see
Fig. 9). If h = 1 no smoothing is performed in the predic-
tion and P (Gt|Gt−1) = P (Gt−1). When 1

c < h < 1 dif-
ferent degrees of smoothing are performed on P (Gt−1)
to estimate P (Gt). In the extreme case of h = 1

c , the
smoothing is the strongest and P (Gt|Gt−1) is a uni-
form distribution (P (Gt|Gt−1) = 1

c ). When 0 ≤ h < 1
c

smoothing is inverse. In this case expressions that were
most probable at t − 1 are the least probable at t.

In our recognition system the parameter h acts as a
forgetting factor. The closer h is to 1, the less we forget
about the information provided by all previous images in
the sequence. In extreme cases, when h = 1, all images
in the sequence are taken into account, and when h = 1

c ,
the recognition is performed exclusively on the basis of
the last image acquired.
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Fig. 9 Effect of parameter h in P (Gt|Xt−1). Here Pt−1

stands for P (Gt−1|Xt−1), and Pt(hi) means P (Gt|Xt−1) us-
ing h = hi.

5.1 Estimating p(X|G)

p(x|gi) represents the p.d.f of an image I with co-ordinates
x when the subject is wearing facial expression gi. Our
goal here is to estimate this p.d.f. from the data in the
facial expression manifold. We will use a k-nearest neigh-
bour approach. Let k be the number of elements in the
nearest neighbour set of x, ki(x) the number of elements
in the nearest neighbour set that belong to facial expres-
sion gi (k =

∑c
i=1 ki(x)) and ni the number of samples

in the manifold of facial expression gi. Then

p(x|gi) =
ki(x)

niV(k)
,

where V(k) is the volume of the neighbourhood enclosing
the k nearest neighbours.

The above estimation suffers from the so-called veto

effect [2]. If there is a single image in the sequence, Ir,
such that ki(xr) = 0, then P (gi|X1:t) = 0, no matter
what the values of this probability for all preceding time
instants were. This is an undesired event that often oc-
curs when the face is at the apex of an expression. We
then introduce a regularised estimation for ki termed kr

i

such that

kr
i (x) =

{

η if ki(x) = 0,
ki(x) otherwise,

where the parameter 0 ≤ η ≤ 1 models the amount of
regularisation introduced for a facial expression with no
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neighbour. We also normalise kr
i (x) such that

∑c
i=1 kr

i (x) =
k. So, we estimate p(X|G) as

p(x|gi) =
kr

i (x)

niV(k)
∝

kr
i (x)

ni

6 Experiments

In this section we evaluate the performance of the fa-
cial expression recognition system described in this pa-
per. We have conducted two groups of experiments. The
goal of the first set of experiments is to qualitatively val-
idate the performance of the system by comparing the
results obtained by the facial expression recognition pro-
cedure with our subjective classification. In the second
group of experiments we quantitatively test the perfor-
mance of the system by classifying the 333 sequences
from the Cohn-Kanade data base used to build the ex-
pression manifold.

The linear subspace of the tracker used in this section
was obtained with the procedure and the training data
described in section 3.3. The dimension of the deforma-
tion subspace which results from the training process is
dim(Bd)=27.

In all experiments we followed a cross-validation scheme:
each sequence was classified eliminating all other se-
quences for the same subject from the facial expression
model. We have also assumed that all facial expressions
are equally probable, e.g. P (G1) in (10) is the same for
all facial expressions.

6.1 Qualitative experiments

With these experiments we analyse various image se-
quences and compare the evolution of the recognition
process in the system with our subjective impression.

For the first experiment we have selected four test
sequences from the Cohn-Kanade data base. The di-
mension of the deformation subspace of the tracker was
reduced to 5 using LDA. The number of nearest neigh-
bours used to estimate p(X|G) is 31 and parameter h has
a value of 0.3 Fig. 10 shows the results of the recogni-
tion process for the test sequences. In the first sequence,
shown in plot 10(a), the true facial expression is fear
and the system correctly recognises it. From frame seven
onwards the motion of the mouth and eyebrows is the
movement associated to fear. Before this point, motion
is only associated to the mouth, and other facial expres-
sions (surprise and joy) are recognised. A similar thing
applies to the surprise expression in plot 10(b), where the
eyebrows start to rise in frame five. The most discrimi-
native feature of the expression of disgust is frowning in
the face region between the eyebrows and the nose. This
clearly happens from frame seven onwards in plot 10(c).
Before this frame, the expression may be confused with
sadness because of the shape of the mouth and eyebrows.

Finally, the expression in plot 10(d) was labelled as joy
and classified by our system as fear. In this case the ex-
pression the subject wears is unclear and it is difficult
even for us to assign it to an expression class. Neverthe-
less, since our classifier is probabilistic, we can see that
the probabilities of joy and fear are very similar.

For the second qualitative experiment we acquired
a sequence in which a talking face wears three expres-
sions (joy, surprise and anger) in a realistic situation with
varying illumination and face motion (see Fig. 11). For
this test the model included the neutral facial expres-
sion. The results of the recognition process are shown in
Fig. 12. From frame 0 to 300 the actor is moving, talk-
ing and wearing one facial expression (joy in frame 39).
In this part of the sequence the actor also wears several
expressions that do not directly correspond to the any of
the facial expressions in the model. For example, frame
231 is almost a joy expression, but no teeth were dis-
played, and the eyebrows are raised in frame 296. From
frame 290 to 805, the motion of a tungsten light produces
sharp changes in the illumination of the face. As we will
see, system performance is not severely affected by these
changes. This is thanks to a correct tracker performance,
whose illumination subspace absorbs these variations in
most of this part of the sequence. Between frames 300
and 500 there are three surprise and one joy expres-
sions worn in varying positions and with small out-of-
plane head motions. They are correctly recognised. From
frame 530 to 650 we have an anger expression, which is
correctly recognised in spite of strong translational and
small out-of-plane head motion. Finally, the surprise and
joy expressions in frames 859 and 930 are also correctly
recognised.

In some situations the system does not give a correct
classification. This is because of expressions not repre-
sented in our model, like the tongue sticking out in frame
482. Other failures are caused by tracking inaccuracies,
such as the surprise expressions in frames 689 and 820.

6.2 Quantitative experiments

Here we quantitatively evaluate the performance of our
facial expression recognition algorithm for different con-
figuration parameters and dimensionality reduction pro-
cedures. The performance of the best configuration will
then be compared with other recognition systems. For
our tests we will use once again the 333 manually labelled
image sequences from Cohn-Kanade data base used to
build the facial expression model.

In the first experiment we test the performance of
our classification algorithm with two linear dimension-
ality reduction procedures: LDA [22] and the supervised
version of LPP [30] introduced in [55]. In this case, our
baseline classifier (the one with no dimensionality reduc-
tion) uses the raw facial deformation parameters coming
from the appearance-based tracker. This is equivalent to
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(b) Person 74, sequence 2
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(c) Person 124, sequence 6
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(d) Person 125, sequence 2

Fig. 10 Classification experiment using four sequences from the Cohn-Kanade data base.

a Principal Component Analysis (PCA) [22] projection
of the incoming image pixel intensities. Classification
success for a sequence is declared whenever the posterior
probability of the true facial expression is the largest at
the last frame of the sequence. Tables 1, 2 and 3 show
the confusion matrices resulting from the classification
of the 333 test sequences using the baseline, LPP and
LDA classifiers respectively.

su fe jo sa di an total
su 91.43 2.38 0 0 2.44 0
fe 4.29 59.52 2.44 12 7.32 10.81
jo 2.85 21.43 97.56 2 2.44 5.4
sa 1.43 9.52 0 80 4.88 13.51
di 0 0 0 0 78.05 10.81
an 0 7.14 0 6 4.88 59.46

total 81.67

Table 1 Confusion matrix (expressed in percentage) for the
baseline classification experiment.

su fe jo sa di an total
su 100 2.38 0 0 0 2.7
fe 0 73.81 1.22 6 0 2.7
jo 0 9.52 98.78 4 4.88 2.7
sa 0 9.52 0 84 7.32 8.11
di 0 0 0 6 80.49 10.81
an 0 4.76 0 0 7.32 72.97

total 88.20

Table 2 Confusion matrix (expressed in percentage) for the
LPP classification experiment.

su fe jo sa di an total
su 100 0 0 0 0 2.7
fe 0 73.9 1.2 4 0 0
jo 0 9.5 98.8 4 0 0
sa 0 9.5 0 82 4.8 5.4
di 0 0 0 6 87.9 13.5
an 0 7.1 0 4 7.3 78.4

total 89,13

Table 3 Confusion matrix for the LDA classification exper-
iment.

From these results we can conclude that, as expected,
supervised dimensionality reduction approaches (LDA
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Fig. 11 Tracking results for a realistic sequence.
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Fig. 12 Facial expression recognition in a realistic image sequence.

and supervised LPP) achieve better recognition rates
than PCA. We selected LDA as the dimensionality re-
duction procedure for our system, since it achieved a
marginal improvement over the supervised LPP. An-
other conclusion is that surprise and joy are the easiest
facial expression to recognise, since they involve strong
appearance variations: open mouth and raised eyebrows
for surprise, and open mouth and displayed teeth for joy.
On the other hand, fear, sadness and anger are the most
difficult expressions to recognise, because they involve
more subtle changes in appearance.

Fig. 13 plots the classification rates achieved using
five LDA dimensions while varying both parameter h

and the number of nearest neighbours, k, used to esti-
mate p(X|G). The performance of the system grows very
fast for values of k between 0 and 10. Between 10 and 40
it grows at slower pace. Beyond that value it does not
grow at all. The best performance is achieved for a value
of h = 0.3 (k = 31), although differences are almost
negligible for values of h between 0.16 and 0.8. Values
of h close to 1 achieve the worst performances. This be-
haviour is due to the special structure of the sequences
in the Cohn-Kanade data base, all of which start with
a neutral expression and finish at the expression apex.
In consequence most of the discriminative information is
stored in the last frames of the sequences, near the ex-

pression apex. As the value of h grows closer to 1, more
frames of the initial part of the sequence are considered
in the computation of the posterior probabilities. Conse-
quently, performance decreases, since the initial frames
have similar appearances for all facial expressions.

0 10 20 30 40 50 60
65

70

75

80

85

90

k value

%
 C

la
ss

ifi
ca

tio
n 

su
cc

es
s

classification rate vs k

h=1/6 h=0.2 h=0.3 h=0.5 h=0.6 h=0.8 h=1.0

Fig. 13 Classification rate for different values of nearest
neighbours using 5 LDA dimensions

Table 4 lists the recognition results of our system to-
gether with other results previously described in the lit-
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Ref. Zhao07[70] Yeasin04[66] Cohen03[17] Shan06[56] Michel03[40] Our Method
Apprch SVM HMM TAN Bayesian SVM Bayesian

surprise 98.6 100 93.3 98.8 100 100
fear 94.6 76.4 63.8 66.7 83.3 73.9
joy 96.0 96.6 86.2 100 75.0 98.8

sadness 95.8 96.2 61.2 81.7 83.3 82
disgust 94.7 62.5 62.2 97.5 100 87.9
anger 96.8 100 66.4 84.2 83.3 78.4

neutral - - 78.5 - - -
Total 96.2 90.9 73.2 91.8 87.5 89.13

Table 4 Comparing the performance of our system.

erature. Unfortunately, these results cannot be directly
compared because they were obtained with different data.
Michel and El Kailouby [40] use a set of 72 test examples
from a subject familiar with their system. Although the
other five systems are based on the Cohn-Kanade data
base, they use different sequences. Out of the 485 image
sequences of 97 individuals in the data base, we use 333,
Zhao [70] and Shan [56] use respectively 374 and 316, and
finally Cohen [17] uses sequences related to 53 individu-
als. Moreover, even if all systems had used the same se-
quences, the labelling could be different, since the trans-
lation from FACS AUs to the primary expression may
not be standard. A common set of sequences with asso-
ciated labels is necessary to make fair comparisons. The
sequences that we used in this paper and their labels are
publicly available at http://www.dia.fi.upm.es/ pcr

/face expressions.html.
From Table 4 we can conclude that our system’s per-

formance is similar to some of the best performing sys-
tems (Shan06 and Yeasin04), although Zhao’s results are
clearly ahead. Nevertheless, our system is able to work
in a realistic set up with sharp illumination variations,
small rotations of the face out of camera plane and large
in-plane rotations and translations.

7 Conclusions

In this paper we have introduced a system that recog-
nises facial expressions in video sequences. It uses the
deformation parameters provided by a dense and effi-
cient appearance-based face tracker. The tracker is able
to run at standard video frame rates and is robust to
illumination variations.

We have also introduced a model-based facial ex-
pression recognition system. A facial expression is rep-
resented by a set of samples that model a low dimen-
sional manifold in the space of deformations generated
by the tracker parameters. In our approach, an image
sequence becomes a path in the space of deformations.
We use a nearest-neighbour technique to estimate the
probability of occurrence of an image from the facial
expression sequence. Finally, with a recursive Bayesian
procedure, we sequentially combine these probabilities
to estimate a posterior for each facial expression. A tar-
get sequence may be assigned to the facial expression
with maximum posterior probability, or it may also be

described as a probabilistic blending of primary facial
expressions. Our solution differs from previous related
approaches [16,56] in various ways: a) our manifolds are
user independent, while those introduced in [16] depend
on the identity of the user; b) we use the parameters
of an illumination-independent linear model as discrimi-
native information for expression classification, whereas
Active Wavelet Networks [31] and Local Binary Pattern
features [43] are used respectively in [16] and [56]; c)
our algorithm for estimating the posterior probabilities
is different from those in [16] and in [56] regarding both
the estimation of p(X|G) and the assumption that all
transitions between facial expressions are equally proba-
ble. Here we introduce a function p(Gt|Gt−1). This func-
tion depends on a parameter h that models the size of
the temporally ordered set of images used to predict
p(Gt|Xt−1).

Thanks to the robustness of the tracker, our system
is able to work in a realistic set up with sharp illumina-
tion variations, small rotations of the face out of camera
plane and large in-plane rotations and translations. In
the future we may achieve small improvements in the
performance of our system using a more involved dimen-
sionality reduction technique and introducing a post-
classification procedure to refine the system’s decision in
difficult sequences. Larger improvements of performance
will come mainly from the integration of multiple modal-
ities, such as voice analysis and context.

Both the face tracker and the model of facial expres-
sions can be easily reconfigured. Although the tracker
has a user-independent working mode, it can also be con-
figured to work in a user-dependent mode which provides
better accuracy. The training for either mode is fully
automatic. In our facial expression model we have intro-
duced Ekman’s six prototypic facial expressions, but any
other set of expressions could be used by just tracking a
set of sample sequences and introducing those samples
in a new expression manifold.

In spite of the existence of the Cohn-Kanade data
base, the scientific community is unable to make fair
comparisons of facial expression analysis systems be-
cause there is no agreed upon set of sequences and labels.
We contribute to the solution of this problem by publish-
ing the sequences and labellings used in our experiments.
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