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Abstract. The main result of this paper is a procedure for self-calibration

of a moving camera from instantaneous optical flow. Under certain assump-

tions, this procedure allows the ego-motion and some intrinsic parameters of

the camera to be determined solely from the instantaneous positions and ve-

locities of a set of image features. The proposed method relies upon the use

of a differential epipolar equation that relates optical flow to the ego-motion

and internal geometry of the camera. The paper presents a detailed derivation

of this equation. This aspect of the work may be seen as a recasting into an

analytical framework of the pivotal research of Viéville and Faugeras.1 The
information about the camera’s ego-motion and internal geometry enters the

differential epipolar equation via two matrices. It emerges that the optical flow
determines the composite ratio of some of the entries of the two matrices. It
is shown that a camera with unknown focal length undergoing arbitrary mo-

tion can be self-calibrated via closed-form expressions in the composite ratio.
The corresponding formulae specify five ego-motion parameters, as well as the

focal length and its derivative. An accompanying procedure is presented for
reconstructing the viewed scene, up to scale, from the derived self-calibration
data and the optical flow data. Experimental results are given to demonstrate
the correctness of the approach.

1. Introduction

Of considerable interest in recent years has been to generate computer vision
algorithms able to operate with uncalibrated cameras. One challenge has been to
reconstruct a scene, up to scale, from a stereo pair of images obtained by cam-
eras whose internal geometry is not fully known, and whose relative orientation
is unknown. Remarkably, such a reconstruction is sometimes attainable solely by
consideration of corresponding points (that depict a common scene point) identi-
fied within the two images. A key process involved here is that of self-calibration,
whereby the unknown relative orientation and intrinsic parameters of the cameras
are automatically determined.2,3

In this paper, we develop a method for self-calibration of a single moving camera
from instantaneous optical flow. Here self-calibration amounts to automatically
determining the unknown instantaneous ego-motion and intrinsic parameters of
the camera, and is analogous to self-calibration of a stereo vision set-up using
corresponding points.

The proposed method of self-calibration rests on a differential epipolar equation
that relates optical flow to the ego-motion and intrinsic parameters of the cam-
era. A substantial portion of the paper is devoted to a detailed derivation of this
equation. The differential epipolar equation has as its counterpart in stereo vision
the familiar (algebraic) epipolar equation. Whereas the standard epipolar equa-
tion incorporates a single fundamental matrix ,4,5 the differential epipolar equation
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incorporates two matrices. These matrices encode the information about the ego-
motion and internal geometry of the camera. Any sufficiently large subset of an
optical flow field determines the composite ratio of some of the entries of these
matrices. It emerges that, under certain assumptions, the moving camera can be
self-calibrated via closed-form expressions evolved from this ratio.

Elaborating on the nature of the self-calibration procedure, assume that a camera
moves freely through space and views a static world. (Since we can, of course, only
compute relative motion, our technique applies most generally to a moving camera
viewing a moving rigid body.) Suppose the interior characteristics of the camera are
known, except for the focal length, and that the focal length is free in that it may
vary continuously. We show in this work that, from instantaneous optical flow, we
may compute via closed-form expressions the camera’s angular velocity, direction of
translation, focal length, and rate of change of focal length. These entities embody
seven degrees of freedom, with the angular velocity and the direction of translation,
that describe the camera’s ego-motion, accounting for five degrees of freedom. Note
that a full description of the ego-motion requires six degrees of freedom. However,
as is well known, the speed of translation is not computable without the provision
of metric information from the scene. (For example, we are unable to discern solely
from a radiating optical flow field whether we are rushing toward a planet or moving
slowly toward a football. This has as its analogue in stereo vision the indeterminacy
of baseline length from corresponding points.)

Our work is inspired by, and closely related to, that of Viéville and Faugeras.1

These authors were the first to introduce an equation akin to what we term here
the differential epipolar equation. However, unlike the latter, the equation from
Viéville and Faugeras’ work takes the form of an approximation and not a strict
equality. One of our aims here has been to clarify this matter and to place the
derivation of the differential epipolar equation and ramifications for self-calibration
on a firm analytical footing.

In addition to a self-calibration technique, the paper gives a procedure for carry-
ing out scene reconstruction based on the results of self-calibration and the optical
flow. Both methods are tested on an optical flow field derived from a real-world
image sequence of a calibration grid. For related work dealing with the ego-motion
of a calibrated camera, see for example Refs. 6–9.

2. Scene motion in the camera frame

In order to extract 3D information from an image, a camera model must be
adopted. In this paper the camera is modeled as a pinhole (see Figure 1). A
detailed exposition of the pinhole model including the relevant terminology can
be found in Ref. 10, Section 3. To describe the position, orientation and internal
geometry of the camera as well as the image formation process, it is convenient to
introduce two coordinate frames. Select a Cartesian (“world”) coordinate frame Γw

whose scene configuration will be fixed throughout. Associate with the camera an
independent Cartesian coordinate frame Γc, with origin C and basis {ei}1≤i≤3 of
unit orthogonal vectors, so that C coincides with the optical centre, e1 and e2 span
the focal plane, and e3 determines the optical axis (see Figure 1 for a display of
the coordinate frames). Ensure that Γc and Γw are equi-oriented by swapping two
arbitrarily chosen basis vectors of Γw if initially the frames are counter-oriented. In
so doing, it will be guaranteed that the value of the cross product of two vectors is
independent of whether the basis of unit orthogonal vectors associated with Γw or
that associated with Γc is used for calculation. For reasons of tractability, C will
be identified with the point in R3 formed by the coordinates of C relative to Γw.
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Figure 1. Image formation and coordinate frames.

Similarly, for each i ∈ {1, 2, 3}, ei will be identified with the point in R3 formed by
the components of ei relative to the vector basis of Γw.

Suppose that the camera undergoes smooth motion with respect to Γw. At
each time instant t, the location of the camera relative to Γw is given by
(C(t), e1(t), e2(t), e3(t)) ∈ R3 × R3 × R3 × R3. The motion of the camera is then
described by the differentiable function t 7→ (C(t), e1(t), e2(t), e3(t)). The deriva-

tive Ċ(t) captures the instantaneous translational velocity of the camera relative to
Γw at t. Expanding this derivative with respect to the basis {ei(t)}1≤i≤3

(1) Ċ(t) =
∑

i

vi(t)ei(t)

defines v(t) = [v1(t), v2(t), v3(t)]T . This vector represents the instantaneous trans-
lational velocity of the camera relative to Γc at t. Each of the derivatives ėi(t) can
be expanded in a similar fashion yielding

(2) ėi(t) =
∑

j

ωji(t)ej(t).

The coefficients thus arising can be arranged in the matrix

Ω(t) = [ωij(t)]1≤i,j≤3.

Leaving the dependency of the ei upon t implicit, we can express the orthogonality
and normalisation conditions satisfied by the ei as

(3) ei
Tej = δij ,

where

δij =

{
0 if i 6= j,

1 if i = j.

Differentiating both sides of (3) with respect to t, we obtain

ėi
Tej + ei

T ėj = 0.

In view of (2),

ωji = ej
T ėi,
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which together with the previous equation yields

ωij = −ωji.
We see then that Ω is antisymmetric and as such can be represented as

(4) Ω = ω̂

for some vector ω = [ω1, ω2, ω3]T , where ω̂ is defined as

(5) ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .

Writing (2) as

ė1 = ω3e2 − ω2e3,

ė2 = ω1e3 − ω3e1,

ė3 = ω2e1 − ω1e2,

introducing

η = ω1e1 + ω2e2 + ω3e3,

and noting that, for any z = z1e1 + z2e2 + z3e3,

η × z = (ω2z3 − ω3z2)e1 + (ω3z1 − ω1z3)e2 + (ω1z2 − ω2z1)e3,

we have, for each i ∈ {1, 2, 3},
ėi = η × ei.

It is clear from this system of equations that η represents the instantaneous angular
velocity of the camera relative to Γw. The direction of η determines the axis
of the instantaneous rotation of the camera, passing through C, relative to Γw.
Correspondingly, ω represents instantaneous angular velocity of the camera relative
to Γc, and relative to Γc the axis of the instantaneous rotation of the camera is
aligned along ω.

Let P be a point in space. Identify P with the point in R3 formed by the
coordinates of P relative to Γw. With the earlier identification of C and the ei
with respective points of R3 still in force, the location of P relative to Γc can be
expressed in terms of a coordinate vector x = [x1, x2, x3]T determined from the
equation

(6) P =
∑

i

xiei + C.

This equation can be viewed as the expansion of the vector connecting C with P ,
identifiable with the point P − C, relative to the vector basis of Γc. Suppose that
P is static with respect to Γw. As the camera moves, the position of P relative
to Γc will change accordingly and will be recorded in the function t 7→ x(t). This
function satisfies an equation reflecting the kinematics of the moving camera. We
derive this equation next.

Differentiating (6) and taking into account that Ṗ = 0, we obtain
∑

i

(ẋiei + xiėi) + Ċ = 0.

In view of (1) and (2),
∑

i

(ẋiei + xiėi) + Ċ =
∑

i

(
ẋiei + xi

∑

j

ωjiej + viei
)

=
∑

i

(
ẋi +

∑

j

ωijxj + vi
)
ei.
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Therefore, for each i ∈ {1, 2, 3},
ẋi +

∑

j

ωijxj + vi = 0,

or in matrix notation
ẋ+ Ωx+ v = 0.

Coupling this with (4), we obtain

(7) ẋ+ ω̂x+ v = 0.

This is the equation governing the evolution of x. Taking into account that ω̂x =
ω × x, it can also be stated in a more traditional form as

ẋ+ ω × x+ v = 0.

3. Differential epipolar equation

The camera image is formed via perspective projection of the viewed scene,
through C, onto the plane parallel to the focal plane (again, see Figure 1). In
coordinates relative to Γc the image plane is described by {x ∈ R3 : x3 = −f},
where f is the focal length. If P is a point in space, and if x and p are the
coordinates relative to Γc of P and its image, then

(8) p = −f x
x3
.

Suppose again that P is static and the camera moves with respect to Γw. The
evolution of the image of P will then be described by the function t 7→ p(t). This
function is subject to a constraint deriving from equation (7). We proceed to
determine this constraint.

First, note that (8) can be equivalently rewritten as

(9) x = −x3p

f
,

which immediately leads to

(10) ẋ =
x3ḟ − ẋ3f

f2
p− x3

f
ṗ.

Next, applying the matrix v̂ (formed according to the definition (5)) to both sides
of (7) and noting that v̂v = 0, we get

v̂ẋ+ v̂ω̂x = 0.

Now, in view of (9) and (10),

x3ḟ − ẋ3f

f2
v̂p− x3

f
v̂ṗ− x3

f
v̂ω̂p = 0.

Applying pT to both sides of this equation, dropping the summand with pT v̂p in
the left-hand side (in view of the antisymmetry of v̂, we have pT v̂p = 0), and
cancelling out the common factor −x3/f in the remaining summands, we obtain

(11) pT v̂ṗ+ pT v̂ω̂p = 0.

This is the sought-after constraint. We call it the differential epipolar equation. This
term reflects the fact that equation (11) is a limiting case of the familiar epipolar
equation in stereo vision. We shall not discuss here the relationship between the
two types of epipolar equations, referring the reader to Ref. 11 and its short version
Ref. 12, where an analogue of (11), namely equation (20) presented below, is derived
from the standard epipolar equation by applying a special differentiation operator.
We also refer the reader to Ref. 8, where a similar derivation (though not involving
any special differentiation procedure) is presented in the context of images formed
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on a sphere. It is due to a suggestion of Torr13 that in this work we derive the
differential epipolar equation from first principles rather than from the standard
epipolar equation.

The differential epipolar equation is not the only constraint that can be imposed
on functions of the form t 7→ p(t). As shown by Åström and Heyden,14 for every
n ≥ 2, such functions satisfy an nth order differential equation that reduces to the
differential epipolar equation when n = 2. The nth equation in the series is the
infinitesimal version of the analogue of the standard epipolar equation satisfied by
a set of corresponding points, identified within a sequence of n images, depicting a
common scene point. This paper rests solely on the differential epipolar equation
which is the simplest of these equations.

4. Alternative form of the differential epipolar equation

To account for the geometry of the image, it is useful to adopt an image-related
coordinate frame Γi, with origin O and basis of vectors {εi}1≤i≤2, in the image
plane. It is natural to align the εi along the sides of pixels and take one of the four
corners of the rectangular image boundary for O. In a typical situation when image
pixels are rectangular, Γi and Γc are customarily adjusted so that εi = siei, where
si characterises the pixel size in the direction of εi in length units of Γc. Suppose
that a point in the image plane has coordinates p = [p1, p2,−f ]T and [m1,m2]T

relative to Γc and Γi, respectively. If [m1,m2]T is appended by an extra entry equal
to 1 to yield the vector m = [m1,m2, 1]T , then the relation between p and m can
be conveniently written as

(12) p = Am,

where A is a 3×3 invertible matrix called the intrinsic-parameter matrix. With the
assumption εi = siei in force, if [i1, i2]T is the Γi-based coordinate representation
of the principal point (that is the point at which the optical axis intersects the
image plane), then A takes the form

A =



s1 0 −s1i1
0 s2 −s1i2
0 0 −f


 .

When pixels are non-rectangular, A takes a more complicated form accounting for
one more parameter that encodes shear in the camera axes (see Ref. 10, Section 3).

The differential epipolar equation (11) can be restated so as to use, for any given
instant, the Γi-based vector [mT , ṁT ]T in place of the Γc-based vector [pT , ṗT ]T .
The time-labeled set of all vectors of the form [mT , ṁT ]T , describing the position
and velocity of the images of various elements of the scene, constitutes the true
image motion field which, as is usual, we assume to correspond to the observed
image velocity field or optical flow (see Ref. 15, Chapter 12).

It follows from (12) that

(13) ṗ = Ȧm+Aṁ.

This equation in conjunction with (12) implies that

pT v̂ṗ = mTAT v̂Ȧm+mTAv̂Aṁ,

pT v̂ω̂p = mTAT v̂ω̂Am,

and so (11) can be rewritten as

mTAv̂Aṁ+mT
(
AT v̂ω̂A+AT v̂Ȧ

)
m = 0.

Letting

(14) B = ȦA−1,
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we have

(15) mTAT v̂Aṁ+mTAT v̂(ω̂ +B)Am = 0.

Given a matrix X, denote by Xsym and Xasym the symmetric and antisymmetric
parts of X defined, respectively, by

Xsym =
1

2
(X +XT ), Xasym =

1

2
(X −XT ).

Evidently

mTXsymm = mTXm,(16a)

mTXasymm = 0.(16b)

Since ω̂ and v̂ are antisymmetric, we have

(17) (v̂ω̂)sym =
1

2
(v̂ω̂ + ω̂v̂), (v̂B)sym =

1

2
(v̂B −BT v̂).

Denote by C the symmetric part of AT v̂(ω̂ +B)A. In view of (17), we have

(18) C =
1

2
AT (v̂ω̂ + ω̂v̂ + v̂B −BT v̂)A.

Let

(19) W = AT v̂A.

On account of (15), (16a) and (18), we can write

(20) mTWṁ+mTCm = 0.

This is the differential epipolar equation for optical flow. A constraint similar,
termed the first-order expansion of the fundamental motion equation, is derived
by quite different means by Viéville and Faugeras.1 In contrast with the above,
however, it takes the form of an approximation rather than a strict equality.

In view of (19) and the antisymmetry of v̂, W is antisymmetric, and so W = ŵ
for some vector w = [w1, w2, w3]T . C is symmetric, and hence it is uniquely deter-
mined by the entries c11, c12, c13, c22, c23, c33. Let π(C,W ) be the joint projective
form of C and W , that is, the point in the 8-dimensional real projective space P8

with homogeneous coordinates given by the composite ratio

π(C,W ) = (c11 : c12 : c13 : c22 : c23 : c33 : w1 : w2 : w3).

Clearly, π(λC, λW ) = π(C,W ) for any non-zero scalar λ. Thus knowing π(C,W )
amounts to knowing C and W to within a common scalar factor.

The differential epipolar equation (20) forms the basis for our method of self-
calibration. We use this equation to determine π(C,W ) from the optical flow.
Knowing π(C,W ) will in turn allow recovery of some of the parameters describing
the ego-motion and internal geometry of the camera, henceforth termed the key
parameters.

Finding π(C,W ) from the optical flow is in theory straightforward. If, at any
given instant t, we supply sufficiently many (at least eight) independent vectors
[mi(t)

T , ṁi(t)
T ]T , then C(t) and W (t) can be determined, up to a common scalar

factor, from the following system of equations:

(21) mi(t)
TW (t)ṁi(t) +mi(t)

TC(t)mi(t) = 0.

Note that each of these equations is linear in the entries of C(t) and W (t). There-
fore solving (21) reduces to finding the null space of a matrix, and this problem can
be tackled, for example, by employing the method of singular value decomposition.
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The extraction of key parameters from π(C,W ) will be discussed in the next
section. We close the present section by showing that π(C,W ) lies on a hypersur-
face of P8, a 7-dimensional manifold. Indeed, by (18) and (19), we have

(22) C =
1

2

[
WA−1(ω̂ +B)A+AT (ω̂ −BT )(AT )−1W

]
.

Taking into account that wTW = 0 and Ww = 0, we see that

wTCw = 0.

The left-hand side is a homogeneous polynomial of degree 3 in the entries of C
and W , and so the equation defines a hypersurface in P8. Clearly, π(C,W ) is a
member of this hypersurface. Thus π(C,W ) is not an arbitrary point in P8 but is
constrained to a 7-dimensional submanifold of P8, a fact already noted in Ref. 1.

5. Self-calibration with free focal length

Of the key parameters, 6 describe the ego-motion of the camera, and the rest
describe the internal geometry of the camera. Only 5 ego-motion parameters can,
however, be determined from image data, as one parameter is lost due to scale
indeterminacy. Given that π(C,W ) is a member of a 7-dimensional hypersurface
in P8, the total number of key parameters that can be recovered by exploiting
π(C,W ) does not exceed 7. If we want to recover all 5 computable ego-motion
parameters, we have to accept that not all intrinsic parameters can be retrieved.
Accordingly, we have to adopt a particular form of A, deciding which intrinsic
parameters will be known and which will be unknown, and also which will be
fixed and which will be free. We define a free parameter to be one that may vary
continuously with time.

Assume that the focal length is unknown and free, that pixels are square with
unit length (in length units of Γc), and that the principal point is fixed and known.
In this situation, for each time instant t, A(t) is given by

(23) A(t) =




1 0 −i1
0 1 −i2
0 0 −f(t)


 ,

where i1 and i2 are the coordinates of the known principal point, and f(t) is the
unknown focal length at time t. From now on we shall omit in notation the depen-
dence upon time. Let π(v) be the projective form of v, that is, the point in the
2-dimensional real projective space P2 with homogeneous coordinates given by the
composite ratio

π(v) = (v1 : v2 : v3).

As is clear, π(v) captures the direction of v. It emerges that, with the adoption
of the above form of A, one can conduct self-calibration by explicitly expressing
the entities ω, π(v), f and ḟ in terms of π(C,W ). Of these entities, ω and π(v)
account for 5 ego-motion parameters (ω accounting for 3 parameters and π(v)

accounting for 2 parameters), and f and ḟ account for 2 intrinsic parameters. Note
that v is not wholly recoverable, the length of v being indeterminate. Retrieving
ω, π(v), f and ḟ from π(C,W ) has as its counterpart in stereo vision Hartley’s16

procedure to determine 5 relative orientation parameters and 2 focal lengths from a
fundamental matrix whose intrinsic-parameter parts have a form analogous to that
given in (23) (with i1 and i2 being known).

We now describe the self-calibration procedure in detail. We first make a reduc-
tion to the case i1 = i2 = 0. Represent A as

A = A1A2,
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where

A1 =




1 0 0
0 1 0
0 0 −f


 , A2 =




1 0 −i1
0 1 −i2
0 0 1


 .

Let

C1 = (A−1
2 )TCA−1

2 , W 1 = (A−1
2 )TWA−1

2 .

Letting B1 be the matrix function obtained from (14) by substituting A1 for A,

and taking into account that Ȧ2 = 0, we find that

B = ȦA−1 = Ȧ1A2(A1A2)−1 = B1.

Using this identity, it is easy to verify that C1 and W 1 satisfy (18) and (19),
respectively, provided A and B in these equations are replaced by A1 and B1.
Therefore, passing to A1, C1 and W 1 in lieu of A, C and W , respectively, we may
assume that i1 = i2 = 0.

Henceforth we shall assume that such an initial reduction has been made, letting
A, C and W be equal to A1, C1 and W 1, respectively. Let S be the matrix
defined as

S = A−1(ω̂ +B)A.

A straightforward calculation shows that

(24) S =




0 −ω3 −fω2

ω3 0 fω1

ω2/f −ω1/f ḟ/f


 .

With the use of S, (22) can be rewritten as

(25) C =
1

2
(WS − STW ).

Regarding C and W as being known and S as being unknown, and taking into
account that C—a 3× 3 symmetric matrix—has only six independent entries, the
above matrix equation can be seen as a system of six inhomogeneous linear equa-
tions in the entries of S. Of these only five equations are independent, as C and
W are interrelated. Solving for the entries of S and using on the way the explicit
form of S given by (24), one can express—as we shall see shortly—ω, f and ḟ in
terms of π(C,W ). Once f and hence A is represented as a function of π(C,W ),
v̂ can next be found from

(26) v̂ = (AT )−1WA−1,

which immediately follows from (19). Note that W is known only up to a scalar
factor, and so v̂ (and hence v), cannot be fully determined. However, asW depends
linearly on v̂, it is clear that π(v) can be regarded as being a function of π(C,W ).

In this way, all the parameters ω, π(v), f , and ḟ are determined from π(C,W ).

We now give explicit formulae for ω, π(v), f , and ḟ . Set

(27) δ1 = −ω1

f
, δ2 = −ω2

f
, δ3 = −ω3, δ4 = f2, δ5 =

ḟ

f
.

In view of (24) and (25), we have

c11 = −w2δ2 + w3δ3,

2c12 = w2δ1 + w1δ2,

c22 = −w1δ1 + w3δ3.
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Hence

δ1 =
2c12w2 − (c22 − c11)w1

w2
1 + w2

2

,

δ2 =
2c12w1 + (c22 − c11)w2

w2
1 + w2

2

,

δ3 =
c11w

2
1 + 2c12w1w2 + c22w

2
2

w3(w2
1 + w2

2)
.

(28)

The expressions on the right-hand side are homogeneous of degree 0 in the entries
of C and W ; that is, they do not change if C and W are multiplied by a common
scalar factor. Therefore the above equations can be regarded as formulae for δ1,
δ2, and δ3 in terms of π(C,W ). Assuming—as we now may—that δ1, δ2, δ3 are
known, we again use (24) and (25) to derive the following formulae for δ4 and δ5:

2c13 = w3δ1δ4 + w2δ5 − w1δ3,

2c23 = w3δ2δ4 − w1δ5 − w2δ3,

c33 = −(w1δ1 + w2δ2)δ4.

(29)

These three equations in δ4 and δ5 are not linearly independent. To determine
δ4 and δ5 in an efficient way, we proceed as follows. Let δ = [δ4, δ5]T , let d =
[d1, d2, d3]T be such that

d1 = 2c13 + w1δ3, d2 = 2c23 + w2δ3, d3 = c33,

and let

D =




w3δ1 w2

w3δ2 −w1

−w1δ1 − w2δ2 0


 .

With this notation, (29) can be rewritten as

Dδ = d,

whence
δ = (DTD)−1DTd.

More explicitly, we have the following formulae:

δ4 =
1

Γ

(
w1w3d1 + w2w3d2 − (w2

1 + w2
2)d3

)
,

δ5 =
1

Γ

(
(w1w2δ1 + (w2

2 + w2
3)δ2)d1 − ((w2

1 + w2
3)δ1 + w1w2δ2)d2

+ (w2w3δ1 − w1w3δ2)d3

)
,

(30)

where Γ = (w2
1 + w2

2 + w2
3)(w1δ1 + w2δ2). Again the expressions on the right-hand

side are homogeneous of degree 0 in the entries of C and W , and so the above
equations can be regarded as formulae for δ4 and δ5 in terms of π(C,W ).

Combining (27), (28) and (30), we obtain

ω1 = −δ1

√
δ4, ω2 = −δ2

√
δ4, ω3 = −δ3, f =

√
δ4, ḟ = δ5

√
δ4.

Rewriting (26) as

(31) v1 = −w1

f
, v2 = −w2

f
, v3 = w3,

and taking into account that f has already been specified, we find that

π(v) = (−w1 : −w2 : fw3).

In this way, all the parameters ω, π(v), f and ḟ are determined from π(C,W ).
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Note that, for the above self-calibration procedure to work, a number of condi-
tions must be met. Inspecting (28) we see the need to assume that v3 6= 0 and also
that either v1 6= 0 or v2 6= 0. In particular, v has to be non-zero. Furthermore, Γ
appearing in (30) also has to be non-zero. With the assumption v 6= 0 in place,
we have that Γ 6= 0 if and only if w1δ1 + w2δ2 6= 0. Taking into account the first
two equations of (27) and the first two equations of (31), we see that the latter
condition is equivalent to v1ω1 +v2ω2 6= 0. Altogether we have then to assume that
v3 6= 0, that either v1 6= 0 or v2 6= 0, and, furthermore, that v1ω1 + v2ω2 6= 0.

6. Scene reconstruction

The present section tackles the problem of scene reconstruction. It is shown that
if the camera’s intrinsic-parameter matrix assumes the form given in the previous
section, then knowledge of the entities ω, π(v), f and ḟ allows scene structure to
be computed, up to scale, from instantaneous optical flow.

We adopt the form of A given in (23). Assuming that ω, π(v), f and ḟ are
known, we solve for [xT , ẋT ]T given [mT , ṁT ]T . Note that, of the entities x and
ẋ, solely x is needed for scene reconstruction.

First, using (12) and (13), we determine the values of p and ṗ. Next, substituting
(9) and (10) into (7), we find that

(32) x3

(
ḟp− f(ṗ+ ω̂p)

)
− ẋ3fp+ f2v = 0.

Clearly, ḟp − f(ṗ + ω̂p) and fp are known, v is partially known (namely π(v) is
known), and x3 and ẋ3 are unknown. Assume temporarily that v is known. Then
(32) can immediately be employed to find x3 and ẋ3. Indeed, bearing in mind that

ḟp − f(ṗ + ω̂p), fp and f2v are column vectors with 3 entries, one can regard
(32) as being a system of 3 linear equations (algebraic not differential!) in x3 and
ẋ3, and this system can easily be solved for the two unknowns. Upon finding x3

and ẋ3, we use (9) and (10) to determine x and ẋ. With x thus specified, scene
reconstruction is complete.

Note that this method breaks down when ḟp − f(ṗ + ω̂p) and fp are linearly
dependent, or equivalently if

p̂(ṗ+ ω̂p) = 0.

In view of (9) and (10), if x3 6= 0, then the last equation is equivalent to

x̂(ẋ+ ω̂x) = 0

and this, by (7), is equivalent to x̂v = 0. We need therefore to assume that x̂v 6=
0, or equivalently that x and v are linearly independent, whenever x3 6= 0. In
particular, this means that v 6= 0.

We are left with the task of determining v. Fix ‖v‖ arbitrarily as a positive
value. In view of v 6= 0, one of the components of v, say v3, is non-zero. Since

(sgn v3)
v

‖v‖ =

((
v1

v3

)2

+

(
v1

v3

)2

+ 1

)−1/2 [
v1

v3
,
v1

v3
, 1

]T
,

where sgn v3 denotes the sign of v3 and ‖w‖ =
√
w2

1 + w2
2 + w2

3, and since the right-
hand side is expressible in terms of π(v), one can regard (sgn v3)v/‖v‖ as being
known. With the assumed value of ‖v‖, we see that v is determined up to a sign.
The sign is a priori unknown because v3 is unknown. However, it can uniquely be
determined by requiring that all the x3 calculated by solving (32) be non-negative.
This requirement simply reflects the fact that the scene is in front of the camera.
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Figure 2. Image sequence of a calibration grid.

Figure 3. Optical flow.

Figure 4. Reconstruction from various views.

7. Experimental results

In order to assess the applicability and correctness of the approach, a simple
test with real-world imagery was performed. The three images shown in Figure 2
were captured via a Phillips CCD camera with a 12.5 mm lens. Corners were
localised to sub-pixel accuracy with the use of a corner detector, correspondences
between the images were obtained, and the optical flow depicted in Figure 3 was
computed by exploiting these correspondences (no intensity-based method was used
in the process). A straightforward singular value decomposition method was used
to determine the corresponding ratio π(C,W ) from the optical flow. Closed-form
expressions described earlier were employed to self-calibrate the system. With the
seven key parameters recovered, the reconstruction displayed in Figure 4 was finally
obtained. Note that reconstructed points in 3-space have been connected by line
segments so as to convey clearly the patterns of the calibration grid. This simple
reconstruction is visually pleasing and suggests that the approach holds promise.
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8. Conclusion

The primary aim in this work has been to elucidate the means by which a moving
camera may be self-calibrated from instantaneous optical flow. Our approach was
to model the way in which optical flow is induced when a freely moving camera
views a static scene, and then to derive a differential epipolar equation incorporating
two critical matrices. We noted that these matrices are retrievable, up to a scalar
factor, directly from the optical flow. Adoption of a specific camera model, in which
the focal length and its derivative are the sole unknown intrinsics, permitted the
specification of closed form expressions (in terms of the composite ratio of some
entries of the two matrices) for the five computable ego-motion parameters and the
two unknown intrinsic parameters. A procedure was also given for reconstructing a
scene from the optical flow and the results of self-calibration. The self-calibration
and reconstruction procedures were implemented and tested on an optical flow
field derived from a real-image sequence of a calibration grid. The ensuing 3D
reconstruction of the grid squares was visually pleasing, confirming the validity of
the theory, and suggesting that the approach holds promise.
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