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Abstract

We consider the problem of metrically reconstructing a scene viewed by a moving
stereo head. The head comprises two cameras with coplanar optical axes arranged
on a lateral rig, each camera being free to vary its angle of vergence. Under vari-
ous constraints, we derive novel explicit forms for the epipolar equation, and show
that a static stereo head constitutes a degenerate camera con�guration for carry-
ing out self-calibration. The situation is retrieved by consideration of a stereo head
undergoing ground plane motion, and new closed-form solutions for self-calibration
are derived. An error analysis reveals that reconstruction is adversely a�ected by
inward-facing camera vergence angles that are similar in value, and by a principal
point location whose horizontal component is in error. It is also shown that the adop-
tion of domain-speci�c robust techniques for computation of the fundamental matrix
can signi�cantly improve the quality of scene reconstruction. Experiments conducted
with dynamic stereo head images con�rm that avoidance of near-degenerate con-
�gurations and use of robustness techniques are essential if reliable reconstructions
are in future to be attained.

Key words: Self-calibration, metric reconstruction, stereo head, degeneracy,
epipolar equation, fundamental matrix, ego-motion.
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1 Introduction

Attention has recently been devoted to the problem of how relative orienta-
tion and camera calibration parameters may automatically be determined from
stereo and time-varying images (see, for example, [4,7,10,18,19,22,23,25,27]).
Analysis of the epipolar equation and the fundamental matrix has revealed
that at most 7 imaging parameters may be determined from corresponding
points arising in a pair of images. Faugeras et al. [7] reported that 5 intrin-
sic parameters can be recovered if 3 stereo views of the scene are obtained
(see also [18]). Using a simpler camera model, Hartley [10] showed that 2
independent focal lengths, in addition to 5 relative orientation parameters,
could be estimated from a stereo pair by a method involving singular value
decomposition of the fundamental matrix.

In this paper, we revisit the issue of self-calibration and metric reconstruction
in the special context of a stereo head, perhaps the most commonly adopted
binocular camera con�guration in robotics. Here two cameras are arranged
analogously to a pair of eyes, being placed on a lateral rig, each free to vary
its angle of vergence. The optical axes of the cameras are therefore coplanar.
In section 2, we derive explicit, analytical forms for the fundamental matrix,
proving in section 3 that a static stereo head constitutes a degenerate camera
con�guration since some ability to perform self-calibration is inevitably lost.
As such, this work presents one of the �rst studies of the feasibility of self-
calibration.

It emerges that there are con�gurations of the stereo head for which self-
calibration of this kind may not be carried out. Thus, an isosceles con�gu-
ration, in which left and right cameras verge inwards an identical amount, is
shown for the �rst time to be such a degenerate con�guration. Cameras having
parallel optical axes are a more familiar degenerate con�guration.

These degeneracies might be thought of as curios of only theoretical interest,
given that a stereo head is in practice unlikely to satisfy precisely any of these
singularities. However, our implementations and error analyses suggest that
near-singular con�gurations of the stereo head give rise to signi�cant errors in
self-calibration and thus reconstruction. A main goal of this paper is therefore
to lay bare these sensitive con�gurations and to derive some necessary condi-
tions for attainment of good self-calibration and reconstruction outcomes.

In section 4 we consider a special kind of motion of the stereo head in which the
baseline and optical axes remain con�ned to a plane. New closed-form solutions
for self-calibration are thereby obtained, inspired by an earlier technique of
Zhang et al. [25]. Our direct approach may be seen as a contribution to active
vision systems [20,16,2,5,6]. Key factors in the approach taken here are the
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consideration of explicit, analytical forms of the fundamental matrix, and the
use of the vergence angles in the parameterisation of the problem.

We next give some necessary conditions for attaining improved self-calibration
and reconstruction results. It is shown that better estimates of the fundamen-
tal matrix may be obtained when a domain-speci�c parameterisation and asso-
ciated robust computational techniques are adopted. Improved self-calibration
and 3D reconstructions may be obtained by avoidance of near-degenerate con-
�gurations (see section 6). A key factor here is an error analysis of principal
point location error versus self-calibration accuracy. It is demonstrated that
errors can be mitigated by judicious avoidance of near-singular head con�gu-
rations.

Finally, in sections 7 and 8, we show via both synthetic and real-world exper-
iments that techniques arising out of these analyses permit relatively robust
reconstructions to be computed either from an image pair obtained from static
stereo head, or from two pairs of images obtained from a stereo head undergo-
ing ground-plane motion. Our work extends considerably the explicit analysis
of the epipolar geometry presented in Brooks et al. [3].

Research most closely related to that presented here is the self-calibration
dynamic stereo work of Zhang et al. [25] and the special techniques for com-
putation of the stereo-head fundamental matrix due to Li et al. [15]. However,
the former does not seek closed-form solutions amenable to error analysis,
while the latter is not concerned with self-calibration or reconstruction. The
metric calibration work of Zisserman et al. [27] is also related. Here, they show
that metric structure may be computed to a two fold ambiguity from a single
general motion of a �xed stereo rig. This approach involves the identi�cation of
certain geometrical objects which are invariant to Euclidean transformations
in 3-D space, namely the plane at in�nity and the absolute conic. However,
none of these approaches investigate degenerate con�gurations or conduct er-
ror analyses of the self-calibration process.

2 Stereo head assembly

2.1 The epipolar equation

First we recall the epipolar geometry which underpins our analysis. We shall
adopt a notation similar, but not identical, to that of Faugeras et al. [7];
see the Appendix for a summary of the di�erences. Let m and m0 denote
corresponding points, in homogeneous coordinates, in the left and right images,
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respectively. We may express the epipolar equation as

mTFm0 = 0; (1)

where F is the fundamental matrix [7,17], given by

F = AT TRA0: (2)

Here, R embodies the pure rotation that renders the left image parallel with
the right image,T is a skew-symmetric matrix formed from the baseline vector
connecting the left and right optical centres, and A and A0 are the intrinsic
parameter matrices of the left and right cameras.

Consider now the special case of a stereo head in which a pair of cameras is
mounted on a lateral rig. The cameras are free to vary their angles of vergence.
The y-axes of the two images are parallel, and are orthogonal to the baseline
vector, as depicted in Figure 1. The optical axes, (Cc and C 0c0), and the
baseline, t are therefore coplanar. The matrices R, T and A now take the
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Fig. 1. Stereo head con�guration.

forms

R =

0
BBBBB@

cos � 0 sin�

0 1 0

� sin� 0 cos �

1
CCCCCA; T =

0
BBBBB@
0 �tz 0

tz 0 �tx
0 tx 0

1
CCCCCA ; A =

0
BBBBB@
1 0 �u0
0 1 �v0
0 0 �f

1
CCCCCA :

Here, � is the angular rotation about the y-axis that renders the left image
parallel with the right image; T is formed out of the baseline vector t =
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(tx; 0; tz)
T ; and, for each camera, the focal length and the principal point are

the only unknown intrinsic parameters, denoted by f and (u0; v0), with the
image coordinate system axes assumed to be orthogonal and similarly scaled.

In view of equation (2), the fundamental matrix is now given by

F =

0
BBBBB@

0 �tz tzv
0

0

� 0 �u00�� f 0�

�v0� u0tz � ftx u00v0�+ v00(ftx � u0tz) + f 0v0�

1
CCCCCA ; (3)

where � = tz cos � + tx sin�, and � = �tx cos � + tz sin �.

As is well known, absolute dimensions of depth cannot be determined solely
from knowledge of corresponding points and the associated fundamental ma-
trix. Accordingly, without loss of generality, we set the baseline length to unity,
and note that the direction of the baseline vector is now e�ectively described
by 1 parameter. There are therefore 8 unknowns encoded within F, these being
�; u0; v0; f; u

0

0; v
0

0; f
0 and either tx or tz.

2.2 Vergence-angle parameterisation

The form of F is simpli�ed if an adjustment is made to the parameterisation
by incorporating the left and right vergence angles �1 and �2, where

tx = cos �1; tz = � sin �1; � = �1 + �2: (4)

Here, �1 and �2 specify the extent to which the left and right optical axes
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Fig. 2. Plan view of stereo head showing vergence angles.

point inwards from the direction `straight-ahead'. (Note, therefore, that the
left and right vergence angles are measured in an opposite sense. See Figure 2.)
Relative orientation in this situation is now determined by the pair �1; �2,
instead of �; tx.
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Equation (3) is then expressed in more economical form as

F =

0
BBBBBBBBBBBBBBB@

0 sin�1 �v00 sin�1

sin�2 0 (�u00 sin�2 + f 0 cos �2)

�v0 sin �2 (�u0 sin�1 � f cos �1)
v0(u

0

0 sin �2 � f 0 cos �2)

+v00(u0 sin �1 + f cos �1)

1
CCCCCCCCCCCCCCCA

(5)

in which the 8 unknowns are �1; �2; u0; v0; f; u
0

0; v
0

0; f
0:

In the event that su�ciently-many corresponding points can be located in the
two images, it may be possible to obtain a numerical estimate, Fest, of the
matrix F. Let

Fest =

0
BBBBB@
�1 �2 �3

�4 �5 �6

�7 �8 �9

1
CCCCCA : (6)

Noting that Fest may only be determined up to a scale factor, we may form
the equation

F = �Fest: (7)

Here, the unknown � aligns the scales of the two matrices. We can now obtain
7 equations by linking respective elements of the matrices. However, these
equations are not all independent, since F33 = F23F31=F21+F32F13=F12. Thus
we may obtain up to 6 independent equations, one of which will be utilised in
eliminating �. We therefore observe that, of the 8 unknowns encoded within
F, at most 5 may be determined provided the remaining 3 are known. Further
constraints are therefore needed if we are to solve for the various parameters.

3 Self-calibration of a static stereo head

We now consider how equation (7) may be solved under additional assump-
tions. In doing so, we shall gain insight into the feasibility of self-calibration
of a static rig. Our aim is to develop closed-form expressions for the various
parameters.
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Case 1: u0; v0; u
0

0; v
0

0 known

If the locations of the principal points are known, we may without loss of
generality o�set the coordinates of image points. This simple form of image
recti�cation then permits the setting of u0 = v0 = u00 = v00 = 0 in (7), giving

F =

0
BBBBB@

0 sin�1 0

sin�2 0 f 0 cos �2

0 �f cos �1 0

1
CCCCCA = �

0
BBBBB@
0 �2 0

�4 0 �6

0 �8 0

1
CCCCCA : (8)

This case is relevant either to a pair of static stereo cameras having indepen-
dent, unknown focal lengths, or to a single mobile camera in which the focal
length may be varied. We now have 5 unknown parameters, including �, but
are able to generate only 4 independent equations. Thus, whereas in general
we may obtain via self-calibration 2 focal lengths and 5 relative orientation
parameters, we are unable to �x any of the unknown parameters in this special
situation. The camera con�guration is therefore degenerate for self-calibration.

Case 2: u0; v0; u
0

0; v
0

0 known; f = f 0

Here we assume that the left and right focal lengths are equal, and seek only
the 3 unknown parameters f; �1; �2. This situation corresponds to a single
camera with �xed intrinsic parameters moving in such a way that its optical
axis and x-axis remain always parallel to the ground plane. We may equiva-
lently regard this as a study of stereo head images due to a pair of identical
cameras. Equation (7) now reduces to

F =

0
BBBBB@

0 sin�1 0

sin�2 0 f cos �2

0 �f cos �1 0

1
CCCCCA = �

0
BBBBB@
0 �2 0

�4 0 �6

0 �8 0

1
CCCCCA ; (9)

yielding 4 independent equations. All 3 imaging parameters can now be de-
termined, viz:

f =
q
(�28 � �26)=(�

2
4 � �22); tan �1 = �f �2=�8; tan�2 = f �4=�6: (10)

Note here that f is computed in the same units as the coordinates of the
corresponding points used to estimate the fundamental matrix.

Case 3: u0; v0; u
0

0; v
0

0 known; �1 = �2 = �=2

We now seek to determine �, f and f 0, given the very special situation in
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which the vergence angles are equal, with the principal axes of the cameras
and the baseline forming an isosceles triangle. Our equation is now

F =

0
BBBBB@

0 sin�=2 0

sin �=2 0 f 0 cos �=2

0 �f cos �=2 0

1
CCCCCA = �

0
BBBBB@
0 �2 0

�4 0 �6

0 �8 0

1
CCCCCA : (11)

Noting that F12 = F21, we see that none of the unknown parameters may
be determined without more information being provided. Remarkably, if the
focal lengths are known to be equal, it remains impossible to recover any of
the parameters. Note, however, that the ratio of the focal lengths may be
determined.

Case 4: (u0; v0; f) = (u00; v
0

0; f
0)

Here we assume left and right cameras have identical focal length and principal
point location. This also corresponds to a mobile camera moving horizontally.
The 5 parameters �1; �2; u0; v0; f are now free, equation (7) reducing to:

0
BBBBBBBBBBBBBBB@

0 sin�1 �v0 sin�1

sin �2 0 �u0 sin�2 + f cos �2

�v0 sin �2
�u0 sin �1
�f cos �1

u0v0(sin�1 + sin�2)

+v0f(cos �1 � cos �2)

1
CCCCCCCCCCCCCCCA

= �

0
BBBBB@
0 �2 �3

�4 0 �6

�7 �8 �9

1
CCCCCA(12)

Here we note the following constraints:

(1) F11 = F22 = 0
(2) F31 = F21F13=F12

(3) F33 = (F23 + F32)F13=F12

The analytic form of F has zero determinant. Given that the self-calibration
process operates on an unscaled estimate of the fundamental matrix, we may
infer that equation (12) o�ers the potential for at most 4 of the 5 imaging
parameters to be obtained, assuming that the other is known. Interestingly,
we observe that:

(1) If at least one vergence angle is non-zero, v0 may immediately be obtained
from F.
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(2) In general, at most an additional 3 parameters may then be obtained
providing the remaining one is known.

(3) Analysis of a slightly more general fundamental matrix reveals that the
aspect ratio can never be determined since the relevant parameter fails
to appear in the matrix.

(4) If �2 and �4 are observed to be equal, this corresponding to a symmetric
vergence angle con�guration, then the principal point location may be
determined without knowledge of any other parameter.

Note that these results are fundamental and are not speci�c to our particu-
lar approach. These observations may be con�rmed by inspection of the well
known Kruppa equations.

4 Self-calibration of a stereo head undergoing ground-plane motion

Having seen that a static stereo head, with coplanar optical axes, is a de-
generate con�guration for self-calibration, we now assess the consequences of
moving the head. Speci�cally, we permit:

(1) Motion of the head such that the optical axes and x-axes of the cameras
are con�ned to the ground plane. This therefore captures the situation
in which an upright robot head undergoes ground plane motion.

(2) Independent vergence angles of the head that may vary with the motion.
(3) Each camera to have an unknown but �xed focal length.

The following analysis adopts a technique of Zhang et al. [25] in which various
fundamental matrices are utilised.

4.1 Formulating the fundamental matrices

Let the rig move from an initial position to a �nal position. Let the left-right
pair of images in the initial position be termed I1 and I2, and let the left-
right images in the �nal position be termed I3 and I4 (see Figure 3). The left
camera is thus responsible for the successive images I1 and I3. Assume that the
determining of corresponding points has led to estimates for the fundamental
matrices linking the following image pairs: (I1; I2), (I3; I4), (I1; I3), (I2; I4).
Let the associated analytical fundamental matrices be termed F12, F34, F13,
F24. As before, we aim to solve for the parameters embedded within these
matrices by exploiting the fact that the analytical and the estimated forms of
the fundamental matrix are directly proportional. Note that, in this regard,
the approach pursued in Zhang et al. [25] is quite di�erent in that a least-
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Fig. 3. Motion of the stereo head.

squares approach is used to solve a more general problem in which motion is
not con�ned to the plane (although, unlike here, the relative orientation of
the head is assumed �xed).

Recalling equation (8), the initial position of the rig gives rise to the funda-
mental matrix, F12, given by

F12 =

0
BBBBB@

0 sin�12
1 0

sin�12
2 0 f 0 cos �12

2

0 �f cos �12
1 0

1
CCCCCA : (13)

Assuming that the focal lengths of the respective cameras remain �xed, and
that the vergence angles are free to shift, we obtain the following fundamental
matrix, F34, capturing the epipolar relationship between the left and right
images of the rig in its �nal position:

F34 =

0
BBBBB@

0 sin�34
1 0

sin�34
2 0 f 0 cos �34

2

0 �f cos �34
1 0

1
CCCCCA : (14)

Similarly, the fundamental matrix relating the image pair (I1; I3) is given by

F13 =

0
BBBBB@

0 sin �13
1 0

sin�13
2 0 f cos �13

2

0 �f cos �13
1 0

1
CCCCCA ; (15)
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with the fundamental matrix for the image pair (I2; I4) being

F24 =

0
BBBBB@

0 sin�24
1 0

sin �24
2 0 f 0 cos �24

2

0 �f 0 cos �24
1 0

1
CCCCCA : (16)

Here we note that the focal lengths of the respective cameras remain un-
changed in the movement of the rig from its initial to �nal position. We ob-
serve that, under the above parameterisation, image I1 undergoes a rotation
of (�13

1 +�13
2 ), relative to its own local coordinate system, in becoming oriented

in parallel with image I3.

Note that, in common with Zhang et al. [25], we make no use of the cross
matrices F14 and F23 in our work. In our special situation, these matrices are
theoretically redundant as they may be derived from the other fundamental
matrices (via self-calibration results). However, their incorporation into our
method might be expected to further improve robustness.

4.2 Solving the fundamental matrix equations

It is now necessary to further enhance our notation so as to be able to deal si-
multaneously with various fundamental matrices. Let the numerical estimate,
F

ij
est, of fundamental matrix Fij be represented as

F
ij
est =

0
BBBBB@
�ij1 �ij2 �ij3

�ij4 �ij5 �ij6

�ij7 �ij8 �ij9

1
CCCCCA ; (17)

and let �ij
k = (�ijk )

2. Let a right bar and superscript indicate the fundamental
matrix from which the elements derive. Thus, for example, note that

�k + �ljij = (�ijk )
2 + (�ijl )

2: (18)

In view of the earlier analysis, resulting in (10), we may immediately infer
that

f =

s
�8 � �6

�4 � �2

�����
13

; f 0 =

s
�8 � �6

�4 � �2

�����
24

tan�13
1 = �f �2

�8

�����
13

; tan�13
2 = f

�4
�6

�����
13

; tan�24
1 = �f 0 �2

�8

�����
24

; tan�24
2 = f 0

�4
�6

�����
24
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It then follows that

tan�12
1 = �f �2

�8

�����
12

; tan�12
2 = f 0

�4
�6

�����
12

; tan�34
1 = �f �2

�8

�����
34

; tan�34
2 = f 0

�4
�6

�����
34

We therefore have closed-form solutions for the 2 focal lengths and the rota-
tions between images. Implicit in the above are the directions of the various
translations between perspective centres. Note that we have not made explicit
use of the rotational constraint �12 + �24 � �34 � �13 = 0. The incorporation
of this constraint might be expected to improve robustness of the estimates.
However, this constraint is implicit in the baseline constraint equation which
takes into account the rigidity of the rig and which we now solve to compute
the relative magnitudes of the baseline vectors.

4.3 Solving the baseline constraint equation

We have yet to completely determine the relative orientation of all image pairs
as we have still to compute the relative magnitudes of the baselines. (As noted
earlier, it is not possible to compute absolute scale of the baselines only from
corresponding points.) These relative magnitudes will complete the description
of the motion of the head.

Let the magnitude of the head's baseline vector in the initial position be unity.
The baseline vector, t12, may therefore be written as

t12 = (cos �12
1 ; 0;� sin�12

1 )T : (19)

Letting Lij denote the length of the baseline vector tij, we may immediately
write down the remaining baseline vectors as

t13 = L13(cos �13
1 ; 0;� sin�13

1 )T (20)

t24 = L24(cos �24
1 ; 0;� sin�24

1 )T (21)

t34 = L34(cos �34
1 ; 0;� sin�34

1 )T : (22)

Our task is now to determine the lengths L13, L24, L34. Returning to Figure 3,
we observe (after [25]) the baseline constraint equation

R12 t24 = t13 � t12 +R13t34: (23)
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Expanding this, we have

L24

0
BBBBBB@

cos(�12 + �24
1 )

0

� sin(�12 + �24
1 )

1
CCCCCCA
=

0
BBBBBBB@

L13 cos �13
1 � cos �12

1 + L34 cos(�34
1 + �13)

0

�L13 sin �13
1 + sin �12

1 � L34 cos(�34
1 + �13)

1
CCCCCCCA
:

Here �13 rotates I1 parallel to I3 and is such that �13 = �13
1 + �13

2 . Recall that
�12 = �12

1 + �12
2 . Clearly, the 3 unknown lengths may not be determined from

the above equation. But, on the assumption that the baseline length of the rig
remains constant, so that L34 also has unit length, we may readily infer that

L13 =
�
sin(! � �13)� sin�

�
=sin � ; (24)

where ! = �12+�24
1 ��34

1 , � = �12
2 +�24

1 and � = �13
1 ��12��24

1 . The formula
for L24 then follows directly from the baseline constraint equation. We have
therefore described the motion of the rig.

4.4 Incorporating camera tilt

Our analysis here is a generalisation of that considered in the previous section
in that the head may now tilt up or down, by a rotation about the baseline.
We note that the baseline remains con�ned to a plane, and that the optical
axes of the two cameras are at all times coplanar, but are not con�ned to the
same plane in consecutive head positions. Critically, in the analysis presented
here, either the initial or �nal position of the head should have zero tilt.

We now consider how a rotation of � about the baseline maps the left image
to a new position. A rotation of � about the baseline is equivalent, in the
left image's coordinate system, to three composite rotations: a rotation of �34

1

about the y-axis, followed by a rotation of � about the x-axis, and then a rota-
tion of ��34

1 about the y-axis. In addition to this tilting, the previous rotation
in the plane may still take place. The fundamental matrix may therefore be
expressed as F13 = AT TRA, where

T =

0
BBBBB@

0 sin �13
1 0

� sin�13
1 0 � cos �13

1

0 cos �13
1 0

1
CCCCCA ; A =

0
BBBBB@
1 0 0

0 1 0

0 0 �f

1
CCCCCA ; (25)

and R = Ry(�(�13
1 +�13

2 ))Ry(��34
1 )Rx(�)Ry(�

34
1 ). Here, we adopt the conven-

tion that Rm( ) signi�es a rotation of  about the m-axis.
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A rather complex fundamental matrix results which, after considerable ma-
nipulation, may be simpli�ed to give F13 as

0
BBBBBBBB@

� sin �13
1

sin �34
1

sin � sin�13
1

cos � f sin�13
1

cos�34
1

sin �

cos�34
1

sin(�34
1

+ �13
2
)

� sin �34
1

cos � cos(�34
1

+ �13
2
)

� sin � cos(�34
1

+ �13
2
)

f sin�34
1

sin(�34
1

+ �13
2
)

+f cos�34
1

cos � cos(�34
1

+ �13
2
)

f cos �13
1

sin�34
1

sin � �f cos�13
1

cos � �f2 cos �13
1

cos �34
1

sin �

1
CCCCCCCCA
:

The following equations may now be derived:

tan �13
1 = �f �2

�8

�����
13

; tan�34
1 = �f �1

�3

�����
13

; tan � = � �7
�8 sin�34

1

�����
13

f 2 =
��3�6

�2�5 + �1�4

�����
13

; sec2 (�34
1 + �13

2 ) = sin2 �

 
1 +

�4 + �6=f
2

�5

!�����
13

We therefore have closed-form solutions for the 5 unknowns f , �, �34
1 , �13

1 , �13
2 .

Consideration of the fundamental matrix F24 yields symmetric formulae for
the right camera vergence angles. The analysis is completed when we note
that the previous formulae for baseline lengths are precisely applicable here,
since the moving baseline has remained con�ned to a plane.

5 Robust computation of the fundamental matrix

Accurate self-calibration is highly dependent on a good numerical estimate of
the fundamental matrix. Accordingly, in this section we show how the funda-
mental matrix may best be computed in this particular domain.

5.1 The 6-point algorithm

Given that the fundamental matrix F and corresponding points m = (x; y; 1)
and m0 = (x0; y0; 1) in the initial and �nal images are related via the equa-
tion mTFm0 = 0, a fundamental matrix F of the form given in (12) can be
computed using n � 6 correspondences to solve the following linear system

Ax=0; (26)
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where A is an n� 7 coe�cient matrix given by

A =

0
BBBBB@
x1y

0

1 x1 y1x
0

1 y1 x01 y01 1
...

xny
0

n xn ynx
0

n yn x0n y0n 1

1
CCCCCA (27)

and x is a 7-vector which contains the coe�cients of the fundamental matrix
given by

x = (�2; �3; �4; �6; �7; �8; �9)
T : (28)

Note that under this parameterisation F is constrained to have its �rst two
diagonal entries equal to zero.

Equation (26) can be solved using the linear algorithm, with the aid of singular
value decomposition (SVD). However, the linear algorithm is known not to be
very stable (see [11]) because it fails to impose the essential constraint that
rank(F) = 2, and because the measure to be minimised is not geometrically
meaningful.

Hartley [11] showed that results can be improved by normalizing the coordi-
nates of image points, instead of using pixel units directly, so that their new
values are on average equal to one. This is achieved by translating each image
origin to the centroid of image points and by performing isotropic scaling on
the image coordinates so that the average distance of corresponding points to
the new image origin is

p
2.

In our case, the image origin was translated to the estimated location of the
principal point prior to the isotropic scaling of image coordinates. This we
found was the best approach for the particular data we encountered. In addi-
tion, row scaling of A was carried out. This is based on the observation that
each row of A in (26) is, ideally, orthogonal to x. Since the rows are essentially
independent, each row of A may be scaled to a unit vector. We are unaware
of previous reporting of this technique.

Zhang [26] compared the performance of the linear method with the perfor-
mances of the M-estimator, LMedS and RANSAC techniques ([24], [8], [21])
and con�rmed that, when applied in conjunction with the aforementioned op-
erations, the linear method generates a fundamental matrix of comparable
quality.

Given that the location of the principal point is known, the question arises
whether it is better to use the parameterisation of F given in (9) imposing
5 zeros, or the parameterisation of F given in (12) imposing 2 zeros. Our
implementations suggest that it is far better to impose only 2 zeros, using a

15



6-point algorithm. The reason for this would seem to be that, if the principal
point is not accurately known, the 5-zeros assumption is invalid, and the 3-
point algorithm causes the non-zero entries to incur compensatory distortion.
Such distortions will obviously have a deleterious e�ect upon subsequent self-
calibration.

5.2 Enforcing the rank-2 constraint

The main drawback of the linear method is that the rank-2 constraint on the
fundamental matrix is not enforced. Hartley [11] imposed this constraint a
posteriori by replacing the matrix F obtained via SVD by the matrix F0 which
minimizes the Frobenius norm kF�F0k subject to the constraint det(F0) = 0.

However, this parameterisation is not suitable in our case as it fails to pre-
serve the property that there should be two zero entries in the fundamental
matrix (as in (12)), a property that is essential to our direct approach to
self-calibration. Instead, we impose the rank-2 constraint explicitly within a
non-linear optimisation framework. Speci�cally we minimize the epipolar dis-

tance; that is, the distance of image points to their corresponding epipolar
lines, a geometrically meaningful measure.

To be able to deal with the outliers caused by false matches or by poor lo-
calisation of image features, we employ a robust M-estimator method. Our
procedure for estimating F may now be summarised as follows:

(1) Obtain an initial estimate of F using the 6-point linear algorithm, image-
origin translation, isotropic scaling and row scaling.

(2) Re�ne F by using an M-estimator technique to solve the following non-
linear minimisation

min

F

X
i

wir
2
i

subject to the constraints that kxk2 = 1 and det(F) = 0. Here, the
residual

ri=

vuut 1

l2i;1+l
2
i;2

+
1

l02i;1+l
02
i;2

�
mT

i Fm
0

i

�

is referred to as the epipolar distance [17] and represents the geometric
distance of the pointsmi andm

0

i to their associated epipolar lines de�ned
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by:

(li;1; li;2; li;3)=Fmi;

(l0i;1; l
0

i;2; l
0

i;3)=FTm0

i:

The chosen weighting factor wi is that proposed by Huber [12] and later
used by Luong et al. [17], and is given by

wi=

8>>>>><
>>>>>:

1 if jrij � �

�=jrij if � < jrij � 3�

0 otherwise

where � is the standard deviation of the residuals ri.

We have thus described various techniques used to obtain an improved esti-
mate of the fundamental matrix. One possibility not investigated is that of
using constraint (2) from Case 4 in section 3 which can be expected to further
improve the estimation of the fundamental matrix.

We next analyse how self-calibration is adversely a�ected by error in the lo-
cation of the principal point.

6 Error analysis of self-calibration

In order to apply the self-calibration methods previously described, it is nec-
essary to obtain an estimate of the fundamental matrix from corresponding
image points that are expressed with respect to the correct principal point
location. However, it is well known that in practice the coordinates of the
principal point are very di�cult to estimate with precision, even if classical
camera calibration methods are used [25]. We now assess the consequences of
such imprecision.

Assume that we deal with a stereo pair due to a single camera in motion, as
considered in Case 4 of section 3. Accepting the inevitability of error in the
location of the principal point, let this error be given by (�u0;�v0). Incor-
porating this discrepancy into the analytical formulation of the fundamental
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matrix (with recourse to equation 12) yields

0
BBBBBBBBBBBBBBB@

0 sin �1 ��v0 sin �1

sin �2 0 ��u0 sin�2 + f cos �2

��v0 sin �2
��u0 sin �1
�f cos �1

�u0�v0(sin�1 + sin�2)

+�v0f(cos �1 � cos �2)

1
CCCCCCCCCCCCCCCA

= �

0
BBBBB@
0 �2 �3

�4 0 �6

�7 �8 �9

1
CCCCCA (29)

If we continue to utilize the direct formulae given in (10) to solve for f , �1
and �2, the estimated values for these parameters are likely to be in error.

Accordingly, let f , �1 and �2 denote the true focal length and virtual vergence
angles of the moving camera, and let f̂ , �̂1 and �̂2 denote the corresponding
estimates.

6.1 Focal length estimation errors

Assume that the fundamental matrix has the form given in (29). Application
to this matrix of the direct formula for the focal length given in (10) yields

f̂ 2 = f 2 ��u20 +
2f�u0(sin�1 cos �1 + sin�2 cos �2)

cos2 �1 � cos2 �2
: (30)

Let � = �1 � �2, then substituting � into (30) gives

f̂ 2 = f 2 ��u20 � 2f�u0 cot(�): (31)

Note that when �u0 = 0, we obtain via self-calibration a perfect estimate,
f̂ . Interestingly, note also that f̂ is independent of the perturbation in the
vertical coordinate of the principal point �v0. The relative error of f̂

2 is given
by

jf̂ 2 � f 2j=f 2 = j�u20 + 2f�u0 cot(�)j=f 2;

and is depicted in Figure 4(a) as a function of �u0 and �.

Immediately we observe that it is essential to ensure that the values of the
vergence angles are dissimilar if we are to obtain a good estimate of the fo-
cal length. This is a more dominant factor than �u0 departing from zero.
Clearly, the relative error of f̂ 2 increases without limit as � approaches zero.
This corresponds to an isosceles triangle con�guration of the cameras of the
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Fig. 4. (a) Relative error (as %) of f̂2 versus �u0 and �. (b) Relative error of f̂2 (as
%) versus �u0 with � = 5, 10, 15, 20 deg, in the order of decreasing magnitude of
gradient of the lines. (c) Relative error of f̂2 (as %) versus �1 and �2 with �u0 = 10
pixels. Note that f̂ is not computable at �1 = ��2. In each case, f has been �xed
at 800 pixels in length.

stereo head that was previously shown to be a degenerate singularity for self-
calibration [3]. We also observe that accurate self-calibration will typically
require that vergence angles di�er by several degrees. Given f equal to 800
pixels and � � 20 deg, then the relative error of f̂ 2 is shown in Figure 4(b)
to vary approximately linearly when �u0 varies in the range [�20:::20] pixels.
As an example, a di�erence in vergence angles of at least 5 degrees would be
necessary to ensure that the focal length is obtained with a relative error un-
der 10 % if the location of the principal point is known to within a horizontal
distance of 5 pixels.

Figure 4(c) shows the relative error of f̂ 2 as a function of �1 and �2. As may be
observed, an isosceles camera setup is not the only degenerate con�guration
for self-calibration. Focal length is not computable when � � �1 + �2 = 0 as
inspection of (30) reveals. This familiar degeneracy arises precisely when the
optical axes in the successive camera positions are parallel, corresponding to
a pure translation between camera views.
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6.2 Vergence angle estimation errors

Using the direct formula for �1 given in (10), the estimated vergence angle �̂1
becomes

�̂1 = tan�1

 
� f̂ sin�1
�u0 sin�1 + f cos �1

!
: (32)

The relative error
��� (�̂1 � �1)=�1

��� is not given explicitly here, but is plotted in

Figure 5. It is clear from Figure 5(b) that if the true value �1 is held �xed
while � varies, and that �u0 6= 0, the relative error of �̂1 grows without limit
as � approaches zero. However, if � is maintained at 10 deg or more, then the
relative error of �̂1 varies approximately linearly with principal point error
�u0 (Figure 5(a)). Results analogous to these apply to �̂2.
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Fig. 5. (a) Relative error (as %) of �1 versus �u0 and �1 with � �xed at 10 deg. (b)
Relative error (as %) of �1 versus �u0 and � with �1 �xed at 10 deg.

7 Experimental results with synthetic data

With the aid of synthetic tests, we now analyse the sensitivity of our self-
calibration method to noise in the location of image points. Some consequences
of deviations of the stereo head from the assumed model are also given.

A cloud of 35 points was randomly generated within a cubic volume of side
2400mm lying approximately 600mm in front of the stereo head. These points
were then projected onto each of the 4 image planes arising in the two positions
of the stereo head. The location of each image point was then perturbed in a
random direction by a distance governed by a Gaussian distribution with zero
mean and standard deviation, �, expressed in pixel units. Such a distribution
results in an expected value for the perturbation distance of approximately
0.8 �. As a matter of interest, in the many tests carried out here, the highest
perturbation distance was found to be 3.7 �.
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Left and right focal lengths were set at 6mm and 8mm, with a �xed baseline
length of 300mm. Vergence angles were 15 deg and 17 deg in the initial position,
and 18 deg and 22 deg in the �nal position. The motion of the head was such
that the upward tilt was 10 deg, rotation of the baseline in the plane was
12 deg, with the length of the translation vector mapping the left camera from
initial to �nal position being approximately the same as the baseline length
of the head. Image sizes were 1000� 1000 pixels.

Experiments were conducted with � varying from 0:0 to 1:2 in steps of 0:1.
For each value of �, self-calibration was run 20 times (each time operating on
a di�erent set of images) and the root-mean-square (rms) error of each pa-
rameter was computed. Figure 6 gives a brief summary of how self-calibration
is a�ected by increasing noise, in the case considered. Errors (rms) in lengths
and tilt rotation are given as percentages of the true values, while errors (rms)
in the vergence angles are expressed in degrees.
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Fig. 6. Sensitivity of the self-calibration method to noise in the location of image
points: results of synthetic tests.

We can see from the �gures that errors in the estimates of the various pa-
rameters vary approximately linearly with the extent of the introduced noise,
over the range considered. The lengths of the translation vectors L13 and L24

are the parameters most a�ected by noise, with relative errors of up to 14%
occurring with noise � = 1:2.

At this high noise level, the rms error of the right camera's focal length is
5.2%, the error in the estimated tilt rotation is 8:5%, and the maximum rms
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error of the vergence angles is 1:4 deg. Comparable results were obtained for
similar head movements.

Given that points can routinely be located by automated techniques with an
accuracy of better than � = 0:5, the above results suggest that this approach
holds promise. Note that optimisation as a post-process of the estimates has
not been attempted.

The errors induced in the estimation of the calibration parameters when the
con�guration of the stereo head departs from the assumed model of coplanar
optical axes was also analysed via synthetic tests (see [1]). A di�erence in the
elevation of left and right cameras of up to 15mm, given a baseline length of
300mm, was found to cause a relative rms error under 1% in the computation
of the focal length, and an almost imperceptible error in the vergence angles.
When both cameras had identical elevation, but one of the optical axes was
tilted up to 3 deg, the relative rms error in the estimate of f was 1.2%, while the
error in �1 and �2 was 0:1 deg. The simultaneous e�ect of both discrepancies
was found to be more relevant causing relative errors in the focal length of up
to 3% and an error of up to 0:3 deg in the vergence angles. These tests were
carried out in the presence of noise in the image coordinates governed by a
Gaussian distribution with zero mean and standard deviation, �, of 0.5 pixels.
Note that care was taken in these tests to avoid degenerate con�gurations of
the synthetic stereo head.

8 Experimental results with real images

8.1 Self-calibration and reconstruction via a single moving camera

The self-calibration method was �rst tested on a single moving camera with
its optical axis con�ned to the ground plane. The intrinsic parameters of the
camera remained �xed. Note that this corresponds to case 2 in section 3 where
direct formulae are obtained for the focal length of the camera and for the vir-
tual vergence angles. Figure (7) shows the initial and �nal images taken by a
CCD Panasonic camera with a focal length of 8.5 mm. The dimensions of the
images were 768(cols)� 576(rows) and they were not corrected for radial dis-
tortions. The virtual left and right vergence angles were set at approximately
2 and 8 deg respectively. The principal point of the images was assumed to
be located at the image centre for this experiment. The length of the baseline
was estimated to be 300mm. Note that the scene contains a calibration grid.
This was not used for calibration purposes but to provide ground truth for the
3D reconstruction as the positions of the points in the calibration grid pattern
could be accurately measured.
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After estimating the fundamental matrix that relates both views, the direct
formulae for self-calibration given in (10) were used to compute the focal
length and the virtual vergence angles. Metric reconstruction of the scene was
then performed using the estimated values of the calibration parameters and
knowledge of the baseline length. Various views of the reconstructed calibra-
tion grid have been displayed in Figure 8. The quality of the reconstruction is
patent in view of the preservation of metric invariants such as the orthogonal
relationship between the two boards of the calibration grid, the alignment of
the squares and the equal lengths of the sides of di�erent squares. The quanti-
tative performance was measured by computing the length of the sides of the
squares in the grid and the angle formed by the two pages of the calibration
book. Encouragingly, the relative rms error in the measurement of the length
of the sides of the squares was found to be 3%, while the rms error in the
measurement of the angle was 2:2 deg.

Fig. 7. Pair of images obtained by a moving camera with �xed intrinsic parameters
undergoing ground plane motion.

(a) (b) (c) (d)

Fig. 8. Metric reconstruction of the calibration grid: (a) Front view (b) Top view
(c) Side view (d) Lateral view

8.2 Self-calibration and reconstruction via a dynamic stereo head

Many real-world experiments were carried out, one of which is detailed here.
Figure 9 shows the initial and �nal stereo pairs used to capture an o�ce
scene. Two Pulnix TM-6CN cameras were employed, with left and right cam-
eras having lenses with focal lengths of 12mm and 8mm, respectively. Note
therefore that the right images exhibit a much wider �eld of view than their
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left counterparts. The dimensions of all images were 768(cols)�576(rows). No
corrections were made for such as radial image distortion. After capturing the
�rst stereo pair, the stereo head was moved away from the scene in a direction
parallel to the ground plane, before being rotated a little about the vertical
axis. The vergence angles of the two cameras were varied after the motion to
maintain signi�cant overlap of the four images, and the baseline of the stereo
rig (the distance between the two optical centres) was kept approximately con-
stant. E�ort was made to ensure that the virtual vergence angles describing
the orientation of the left camera's initial and �nal images were of su�ciently
dissimilar absolute magnitude so as to avoid a sensitive con�guration. A simi-
lar e�ort was made with respect to the right camera's images. A poor quality
head apparatus was used, this acting to further challenge the robustness of
the approach.

Fig. 9. Initial (above) and �nal (below) image pairs of a dynamic stereo head.

Feature points were determined and matched using the software of Zhang (the
algorithm is described in [24]). The corresponding points were then expressed
with respect to an origin at the predetermined principal points.

8.2.1 Self-calibration

The four fundamental matrices were computed using the technique described
in section 5. The closed-form self-calibration method described in section 4
was then applied to obtain values for the vergence angles, focal lengths and
motion of the head, from which reconstructions were computed via the stan-
dard method of triangulation. Applying the self-calibration formulae to these
fundamental matrices, the e�ective focal lengths of the left and right cameras
were estimated to be 1639:4 pixels and 1050:2 pixels, respectively. These dis-
tances have a ratio of 1.561, and relate to the nominal focal lengths of 12mm
and 8mm. The left and right vergence angles (in deg) for the initial pair were
estimated at 0:23 and 10:19, whilst those for the �nal pair were estimated at
3:97 and 7:11.
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(a) Overhead view

(b) Table-level view

(c) Intermediate view

Fig. 10. Reconstruction from self-calibration

As noted previously, ground truth values for self-calibration parameters were
not obtained (and for this reason head-motion estimates are not given). How-
ever, the quality of the estimates of the various parameters may be assessed
indirectly by analysing the results of most importance, these being the recon-
structions.
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8.2.2 Reconstruction

The cluttered o�ce scene contains a number of orthogonal surfaces of regular
size that a�ord visual checking of the reconstructions. The vertical, rectangular
pillar exhibits pieces of paper of sizes A5 and A4 on the left and right faces,
respectively. Foreshortened A4 sheets are visible on the surface of the desk.
The computer screen is tilted a little o� the vertical.

The reconstructed scene was displayed using various visualisation tools. Three
snapshots are given in Figure 10. To improve the visualisation of the recon-
struction, some of the reconstructed 3D points have been connected with line
segments.

The reconstruction proves to be of excellent quality, despite the fact that it is
obtained without knowledge of focal lengths, relative orientations and motion
of the stereo head. The overhead view shows that the reconstruction preserves
very well the orthogonal and parallel relationships between various surfaces.
The pieces of paper on the desk have good shape in the overhead view, while
desktop points are seen to be coplanar in the table-level view.

Finally, we note that reconstruction is made more di�cult when lenses with
signi�cantly di�erent focal lengths are used, as was the case here. It is harder
to obtain good estimates of the fundamental matrices in this situation since
the spatial distribution of corresponding points is less extensive. Our recon-
structions obtained with cameras having similar focal lengths prove to be more
accurate.

9 Conclusion

A main aim of this work has been to show that there are some special sensi-
tivities that must be taken into account when attempting to self-calibrate a
stereo head. A further aim has been to explore and develop some of the compu-
tational techniques that need to be employed if a fully robust self-calibration
method is one day to be attained.

New analytical forms were given for the fundamental matrix associated with
the stereo head. Elegant and manipulable forms were obtained by adopting
a novel parameterisation whereby relative orientation is expressed in terms
of vergence angles. Inspection of the explicit forms of fundamental matrices
associated with various con�gurations revealed that the stereo head is a de-
generate set-up for self-calibration. This is meant in the sense that the simpler
situation of a stereo head reduces the capacity to carry out self-calibration in
comparison with the capacity to self-calibrate a pair of cameras in general po-
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sition. The extent to which a reduced form of self-calibration may be achieved
was then explored, and closed-form solutions were given. It was noted that
when the cameras of the stereo head verge inwards by the same angle, the
con�guration becomes acutely degenerate.

In order to explore how a stereo head might more fully be self-calibrated, a sin-
gle step motion of the head was considered. Here, a pair of images is captured
at two separate times, the head having moved in the meantime. Clearly, more
information is obtained in this way, but at the expense of introducing several
new unknowns, since the motion of the head is assumed unspeci�ed and the
vergence angles may change. It emerged that full self-calibration could be ob-
tained by considering not just the fundamental matrices associated with the
left and right cameras in initial and �nal positions but also the fundamental
matrix associated with each camera in its initial and �nal positions. Closed-
form solutions in the elements of the four fundamental matrices were given for
the parameters of the head and its motion. An extension to the analysis was
given that permitted a measure of upward tilting of the head.

Robustness issues were considered next. It was examined how the fundamental
matrix might be calculated in the case of a static stereo head with identical
cameras, or, equivalently, a single, �xed camera undergoing ground plane mo-
tion. Computing an estimate of the fundamental matrix by assuming 5 zero
entries (as per the analytical form) proved to be less e�ective than assuming
there were only 2 zero entries. A procedure was given for calculating the fun-
damental matrix; this involved translation and scaling of data points, the use
of an M-estimator technique and the epipolar distance for detecting outliers.
This amounted to adapting standard methods to our particular problem.

The e�ect on the quality of self-calibration was then considered in relation to
either error in the location of the principal point or proximity to an isosceles
con�guration. It was shown that cognisance of these sensitivities is necessary
if self-calibration of a stereo head is to be successful.

Various practical experiments were conducted. In synthetic tests on images of a
cloud of points, an assessment was made of the sensitivity of the self-calibration
method to noise in the location of image points. Care was taken to avoid near-
degenerate congurations. Empirical results suggest that errors in the estimates
of various parameters vary approximately linearly with change in the standard
deviation of noise in the locating of corresponding points. Our method was
then applied to a pair of real images obtained by a single moving camera
viewing a calibration grid, and the resulting reconstruction was found to be
very accurate. Finally, two pairs of images of an o�ce scene were captured by a
moving stereo head. Self-calibration of the head and its movement was carried
out, and the reconstructed scene again possessed excellent form, suggesting
that the approach holds promise.
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Further work would more fully explore robustness techniques for achieving im-
proved reconstruction, including use of the cross fundamental matrices, and
the rotational constraint. In addition, techniques might be developed for de-
tecting the extent to which a stereo head departs from the idealised model,
along with correction measures. However, it is clear that this endeavour will re-
quire the use of more than just corresponding points. Also of interest would be
to more comprehensively model noise in the system and to develop statistical
techniques for optimal parameter estimation (eg. see [13]).
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A Notation semantics

Our notation di�ers from the standard notation of Faugeras et al. [7] (hence-
forth termed the Faugeras notation). Symbols F, T, R and A denote in this
work the fundamental, translation, rotation and intrinsic-parameter matrices,
respectively. Let the corresponding matrices in Faugeras notation be denoted
F , T , R and A. Herein, the epipolar equation has the formmT Fm0 = 0, where
F = AT TRA0. This contrasts with Faugeras notation, where m0T F m = 0,
and F = A0�T T RA�1. The full list of notational relationships is now given:

F =
q
det(A) det(A0)F T ; A = �

q
det(A)A�1; R = RT ; T = �RT T R:
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