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Abstract We study the issue of computational effi-

ciency for Gauss-Newton (GN) non-linear least-squares

optimization in the context of image alignment. We in-

troduce the Constant Jacobian Gauss-Newton (CJGN)
optimization, a GN scheme with constant Jacobian and

Hessian matrices, and the equivalence and independence

conditions as the necessary requirements that any func-
tion of residuals must satisfy to be optimized with this

efficient approach. We prove that the Inverse Compo-

sitional (IC) image alignment algorithm is an instance
of a CJGN scheme and formally derive the compositional

and extended brightness constancy assumptions as the

necessary requirements that must be satisfied by any

image alignment problem so it can be solved with an
efficient compositional scheme. Moreover, in contradic-

tion with previous results, we also prove that the for-

ward and inverse compositional algorithms are not equiv-
alent. They are equivalent, however, when the extended

brightness constancy assumption is satisfied. To analyze

the impact of the satisfaction of these requirements we
introduce a new image alignment evaluation framework

and the concepts of short- and wide-baseline Jacobian.

In wide-baseline Jacobian problems the optimization

will diverge if the requirements are not satisfied. How-
ever, with a good initialization, a short-baseline Jaco-

bian problem may converge even if the requirements are

not satisfied.
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1 Introduction

Direct image alignment approaches are widely employed

computer vision techniques. They can be used for densely
and efficiently estimating the motion of low or smooth

textured surfaces, like human faces [1,9,11,13,15,17,

23,24,27,29,31,33,34], medical image registration [14],

augmented reality [21] and vision-based tracking and
servoing [7,10], to name a few. The fast local conver-

gence of the Gauss-Newton (GN) non-linear least-squares

make it the most popular optimization technique for
image alignment. This approach, however, is computa-

tionally intensive given the typically large number of

residuals that emerge in these optimizations.

In the last decade the compositional image align-
ment approach [2,3,8,21,14,25,32] has received much

attention. The most remarkable feature of this approach

is that, under the IC formulation introduced by Baker
and Matthews [2,3], the Hessian and Jacobian matrices

in the GN optimization are constant. Thus, it provides

a very efficient image alignment algorithm adequate,

for example, for tracking in real-time with a mobile
phone [20]. Compositional schemes have been used also

for efficient and robust face image alignment [28,33], for

fitting 2D [23,1,15] and 3D [24,26,31] deformable face
models, model-based 2D [21,3] and 3D [12] rigid tar-

get tracking as well as medical [14], 2D [5] and 3D [34]

geometric and photometric image registration.

Despite the widespread use of GN techniques in com-
puter vision and the success of the efficient IC image

alignment approach, we still do not have a theory about

what makes efficiency afforded in GN optimization. More-

over, the IC algorithm lacks a formal presentation. The
relation between IC and the standard GN optimization

scheme is not well understood. We need clear explana-

tion to the fact that we may be able move in the do-
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main of parameters of a non-trivial optimization func-

tion and have a constant descent direction. Tradition-
ally, this has received an intuitive explanation based on

what has been called the compositional trick [5]: if in

the optimization we exchange the role of the incoming
image and the template, then we may be able to com-

pute the descent direction in terms of the latter, that is

constant [2,3]. However, this trick cannot be considered
a general explanation. Hence, we need to know why

and under what requirements some GN optimizations,

and the associated image alignment problems, can be

solved with constant Jacobian and Hessian matrices.

In this paper we provide a theory about efficiency, in

terms of constant Jacobian and Hessian matrices, in GN

optimization, as we revisit the problem of image align-
ment. In Section 3 we introduce the concept of equiv-

alent and independent parameters for residuals with

two sets of parameters. We then prove that any resid-

ual function with equivalent and independent param-
eters can be optimized with a GN procedure featuring

constant Jacobian and Hessian matrices. We call this

approach the Constant Jacobian Gauss-Newton (CJGN)
optimization procedure. Further, in Section 4 we in-

troduce the compositional and the extended brightness

constancy assumptions. We prove that if they are sat-
isfied, we can approximate the residuals of the compo-

sitional image alignment approach in terms of a func-

tion with equivalent and independent parameters, thus,

leading to the Efficient Compositional (EC) image align-
ment algorithm, that features constant Jacobian and

Hessian matrices. We also prove that, under the same

requirements, IC is also an instance of a CJGN scheme
and that IC and EC are actually the same algorithm,

being EC a formal derivation of IC within the CJGN

scheme. Moreover, we also prove that forward and in-
verse compositional image alignment approaches are

equivalent when the extended brightness constancy as-

sumption is satisfied. This is in contradiction with pre-

vious results that proved their unconditional equiva-
lence [3]. To further clarify this point we also provide a

counter example proving that, in general, forward and

inverse compositional approaches cannot be equivalent.
In Section 5 we experimentally study the impact that

the satisfaction of the above mentioned requirements

has in the performance of the efficient compositional
schemes. To this end, we extend the traditional con-

cept of short and wide-baseline image alignment to that

of short and wide-baseline Jacobian and introduce a

new image alignment evaluation framework that con-
siders the wide-baseline Jacobian setting. Finally, in

Sections 6 and 7 we discuss the results in the paper

and draw conclusions.

1.1 Notation

Regular lowercase symbols such as x, f , represent scalar
values or functions; bold symbols such as θ, r are vec-

tors; teletype uppercase symbols such as R or H indicate

matrices; uppercase calligraphic symbols as X are sets.

If f(x) is the application of f on x ∈ X , f(X ) is the
vector resulting from stacking the result of the applica-
tion of f to each element in X .

We have chosen regular capital letters (I, T ) to re-
fer to gray-scale images. An image is an application

I : Rd → R, where d is the dimension of the image do-

main. In our case d = 2. Since we work with image se-
quences we add a second parameter, t, I : Rd×R→ R,

that represents time or the order of the image in the

sequence.

The models that we use in the paper are defined in

in 2D, P2, and 3D, R3. Hence, to relate a point with its
gray value in an image we need to project it onto R2. We

denote with p : D → R
2, D ∈ {R3,P2}, the projection

function. Thus, the gray value of point x in the image T

is given by T (p(x)). We use the following notation to
reduce verbosity I(p(x), t) ≡ I[x, t] and T (p(x)) ≡
T [x].

2 Background and related work

In this section we review the related literature and in-
troduce basic background concepts about image align-

ment.

2.1 Image alignment and the BCA

Image alignment is the process of bringing into coinci-

dence the projection of a target in two or more images.
The target model is represented as a template, T , and

provides information such as the structure and texture

of the object to be aligned.

Direct image alignment approaches are based on the

Brightness Constancy Assumption (BCA).

Definition 1 (Brightness Constancy Assumption)

Given a template T and a warping function f , for any

image I at time t there exists a parameter vector µ such

that

I[f(x,µ), t] = T [x], ∀x ∈ V, (1)

where f(x,µ) : D×Rp → D is the warping function that
models changes in the visual appearance of the moving

object transforming points in V ∈ D into V ′ ∈ D (see

Fig. 1).
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T I

Fig. 1 Domains D, V, X involved in an image alignment
problem. D depends on the domain in which the warping
function is defined. Typical domains for this example would
be R

2 or P
2. (left) We overlay the target region V (yellow

square) onto the template T . The support set X for the tar-
get region V is given by the set of yellow dots. (right) We
transform V and X into V′ and X ′ by means of f .

In practice, the alignment process is solved as an
optimization

µt = argmin
µ

1

2

∑

x∈X

(I[f(x,µ), t]− T [x])2, (2)

where X is a finite subset of V, the support set (see
Fig. 1). We use as error measure the Sum of Squared

Differences [3,17,21]. However, our results also apply

to other robust measures such as those in [16,17,31].

The GN approach [30] minimizes (2) iteratively by
solving at each step a local optimization argmin∆φ L(∆φ),

L(∆φ) =
1

2

N
∑

i=1

ri(µ, ∆φ)2 =
1

2
r⊤(µ, ∆φ)r(µ, ∆φ)

(3)

where N = card(X ) and r(µ, ∆φ) is the vector of reg-

istration residuals,

r(µ, ∆φ) = I[f(X ,w(µ, ∆φ)), t+ 1]− T [X ], (4)

and µ ← w(µ, ∆φ), w : Rp × R
q → R

p, is the step

update function.

A feature common to most image registration pro-

cedures is the existence of two vectors of warping pa-

rameters. Vector µ is the global parameter vector. It
represents the motion from the origin of the space of

warping parameters up to the point where the target is

located at time t. Vector ∆φ is the local parameter vec-
tor, that represents an incremental motion of the target

with respect to µ. We have used a different notation for

each vector to denote the fact that we may use a local

warping function different from the global one. In Sec-
tion 3 we will see that the existence of two spaces of

parameters will be the key for the efficiency of the opti-

mization algorithm, since, in certain circumstances, we

will be able to compute the optimization step for any

µ in a fixed point of the space of local parameters.
Depending on the analytic formulation of the vector

of registration residuals and on the step update func-

tion, several image alignment algorithms have emerged
in the literature. In the following we review those di-

rectly related to the efficient compositional image align-

ment problem.

2.2 Non-efficient image alignment

The standard approach for solving (3) is based on using
an additive step update function, w(µ, ∆φ) ≡ µ+∆φ,

following the fundamental structure of a descent opti-

mization method [30]. It is usually known as “Lucas
and Kanade registration” (LK) [3], in acknowledgment

of the work in which this type of registration was first

introduced [22].
The forward compositional (FC) approach has drawn

the attention of many researchers because in many im-

age motion models (e.g. homographies) the composi-

tion of two warps is more natural than their addition.
In this approach we allow the composition of two dif-

ferent warp functions, f ,g : D × R
{p,q} → D, that

share the same domain, but may have different defi-
nitions. The step update function is then defined as

µ← µ′ = w(µ, ∆φ) when f(g(·, ∆φ),µ) = f(·,µ′).

Rewriting the residuals (4) in terms of the compo-
sitional step update, yields the FC image residuals

rc(µ, ∆φ) = I[f(g(X , ∆φ),µ), t+ 1]− T [X ]. (5)

This is a slight generalization to the standard approach [3]

in which f and g are the same function.

A important drawback of both the additive and

compositional approaches is their high computational
cost, caused by the typically large set of image residu-

als to be optimized.

2.3 Inverse Compositional image alignment

The IC image alignment algorithm was introduced by
Baker and Matthews [2,3] to alleviate the cost of the

FC and LK image alignment approaches. The key to the

efficiency of the algorithm is switching the role of the

image and the template in (5), and apply what Bartoli
calls the compositional trick [5] to obtain a new set of

residuals

ric(µ, ∆φ) = I[f(X ,µ), t+ 1]− T [h(X , ∆φ)], (6)

where h : D × R
q → D is a warping function such that

g ≡ h−1. In this case, the minimum of (3) is given by

∆φ = −(Hic)−1(Jic)⊤e(µ), (7)
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where Jic and H
ic are respectively the Jacobian and GN’s

Hessian matrices [30], and

e(µ) = I[f(X ,µ), t+ 1]− T [X ]. (8)

The step update is given by the composition f(x,µ)←
f(h−1(x, ∆φ),µ).

The most remarkable feature of this approach is that

neither Jic nor Hic depend on µ. Thus they are constant

during the minimization and may be computed off-line
(see Algorithms 1 and 2).

Although IC is a widely used alignment algorithm [12,

20,23,24,26,29,31,33,34] its relation with the standard
additive GN optimization is not well understood. For

this reason sometimes it is used in contexts in which it

has poor accuracy [26,12] or in applications in which
it loses much of its efficiency since J

ic and H
ic have to

be updated during the optimization [34] or computed

off-line [31]. In Sections 3 and 4 we formally establish

this relation.
The IC residuals in (6) are different from the com-

positional residuals in (5). So, the minimization (3) is

different in each algorithm. Hence, they are different
alignment approaches. In Section 4.3 we will further

discuss this result and the conditions under which FC

and IC algorithms are equivalent.

Algorithm 1 Inverse compositional algorithm (off-line

stage)

1: Compute template gradient : ∇T← ∂T [x]

∂x

∣

∣

∣

x=X

2: Evaluate g-warp Jacobian: G← ∂g(X ,φ)

∂φ

∣

∣

∣

φ=φ0

3: Compute the constant Jacobian J
ic ← ∇T G

4: Compute GN Hessian H
ic = (Jic)⊤J

ic

5: Compute the pseudo-inverse (Jic)+ = (Hic)−1(Jic)⊤

Algorithm 2 Inverse compositional algorithm for im-
age It+1 knowing an initial estimation µ (on-line stage)
1: repeat
2: Compute e(µ) from (8)
3: Compute local parameters ∆φ = −(Jic)+e(µ)
4: Update global parameters µ:

f(X ,µ)← f(h−1(X ,∆φ),µ)
5: until ‖∆φ‖ < ǫ

3 The Constant Jacobian Gauss-Newton

method

In this section we will formally prove that for a spe-

cial type of residual functions, r(θ,φ), defined over two

sets of equivalent and independent parameters, we can

introduce a GN optimization scheme with constant Ja-
cobian and Hessian matrices. We call this new opti-

mization scheme the Constant Jacobian Gauss-Newton

optimization algorithm (CJGN). In the next section we
will use this general scheme as a framework in which we

can formally derive efficient compositional image align-

ment algorithms.

Definition 2 (Equivalent parameters) Given a func-

tion r : Dθ ×Dφ → R
n, we say that r(θ,φ) has equiv-

alent parameters with a given pivot value φ0 if ∀θ′ ∈
Dθ, ∀φ′ ∈ Dφ, ∃θ = θ(θ′,φ′,φ0) ∈ Dθ such that

‖r(θ′,φ′)‖2 = ‖r(θ,φ0)‖2.

Note that a sufficient condition for having equiva-

lent parameters is r(θ′,φ′) = r(θ,φ0).

Example 1 1. The function r : R2 → R, r(θ, φ) = θ+
φ has equivalent parameters for any pivot value. For

example, consider φ0 = 1. Then, for any φ′, θ′ ∈ R,

one can find θ = θ′+φ′−1 such that θ′+φ′ = θ+φ0.
2. the function r : R2 → R, r(θ, φ) = θ · φ has equiva-

lent parameters for any non-zero pivot value φ0 6= 0.

3. The function r : R
2 → R, r(θ, φ) = θ2 + φ2 has

equivalent parameters only for the pivot value φ0 =

0.

Functions with equivalent parameters define an equiv-

alence relation ∼ that groups all values of Dθ×Dφ that
lead to equivalent values of r(θ,φ). Dθ ×Dφ/ ∼ is the

quotient set made up of all equivalence classes given

by ∼. Each equivalence class has the canonical repre-
sentation (θ,φ0).

Example 2 r(θ, φ) = θ+φ with pivot value φ0 = 0 has
an equivalence class made up of all pairs (θ, φ) whose

evaluation is 0: (1,−1) ∼ (2,−2) ∼ (θ,−θ). Its canon-

ical representation is (0, 0).

Another equivalence class is made up of all pairs
whose evaluation is 1: (2,−1) ∼ (3,−2) ∼ (θ,−θ + 1).

Its canonical representation is (1, 0).

Equivalent parameters are specially useful in the GN

method when the criterion function to optimize has the

form θ∗ = argminθ ‖r(θ,φ0)‖22, where θ and φ0 are
equivalent sets of parameters. Given an initial guess θk,

the standard GN procedure computes the Jacobian J(θk,φ0)

as the derivative of r(θ,φ) with respect to θ, to get the
increment ∆θ to θk [30]. However, thanks to the equiv-

alence of parameters, we can proceed in a slightly differ-

ent manner. We evaluate the Jacobian as the derivative

of r(θ,φ) with respect to the auxiliary set of parame-
ters φ, and compute the the increment ∆φ. This leads

to a new partial solution (θk,φ0+∆φ). Expressing this

value in its canonical form (θk,φ0 +∆φ) ∼ (θk+1,φ0)
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we obtain the updated value θk+1. This procedure is

repeated until convergence or until a stopping criterion
is reached.

The Jacobian J(θk,φ0) = ∂r(θk,φ)
∂φ

∣

∣

∣

φ=φ0

is always

evaluated at φ0, but θk is different at each step. There-

fore, in general, it is not constant. However, in some

cases this Jacobian does not depend on θ. In these
cases, we say that θ and φ are independent.

Definition 3 (Independent parameters) Given a func-
tion r : Dθ ×Dφ → R

n, we say that r(θ,φ) has inde-

pendent parameters, or that θ and φ are independent

if ∂r(θ,φ)
∂φ

∣

∣

∣

φ=φ0

= J(φ0) ∀θ ∈ Dθ, where J(φ0) is a

constant Jacobian matrix that depends on the pivot φ0.

Example 3 1. Functions r(θ, φ) = θ+φ and r(θ, φ) =

θ2 + φ2 have independent parameters.

2. Function r(θ, φ) = θ · φ has equivalent but not inde-

pendent parameters.

Since the Jacobian does not depend on θ under the
independent parameters assumption, we define a new

Jacobian function as JGN ′(φ) = J(θ,φ). Moreover, as

we stated above, the Jacobian is always evaluated at φ0.

We define the constant Jacobian of a function with inde-
pendent and equivalent parameters as JC = JGN ′(φ0).

Hence, given a residual function r(θ,φ) with indepen-

dent and equivalent parameters, one can optimize the
sum of squared residuals with a constant Jacobian JC

using Algorithm 3.

Algorithm 3 The Constant Jacobian GN method.

1: Compute JC = JGN ′(φ0)
2: Compute GN Hessian HC = J

⊤

CJC

3: Compute the pseudo-inverse J
+
C = H

−1
C J

⊤

C

4: Start with an initial guess θ0

5: k ← 0
6: repeat
7: ∆φk = −J+Cr(θk,φ0)
8: Compute θk+1 such that (θk+1,φ0) ∼ (θk,φ0+∆φk)
9: k ← k + 1
10: until ‖∆φ‖ < ǫ or k >= kmax

In this algorithm the parameter vector θk is the

equivalent of the global parameter vector in the regis-

tration algorithms described in Section 2. Similarly, φ
is the local parameter vector. The pivot point φ0 rep-

resents an arbitrary point in the local parameter space

where the constant Jacobian is computed.

3.1 Example

To illustrate the CJGN method, we show how it min-

imizes a simple residual. Consider the objective func-

tion E(θ) = ‖r(θ)‖2, r(θ) = θ2 − 3. Analytically we

can see that E(θ) reaches its minima at θ = ±
√
3.

Now, we introduce an auxiliary parameter φ that al-
lows us to use the CJGN, r(θ, φ) = θ2 + φ2 − 4, and

choose an arbitrary pivot φ0 = 1. This version has also

equivalent and independent parameters, and its Jaco-
bian at φ = 1 is JC = 2. Therefore, we aim to mini-

mize E(θ) = ‖r(θ, φ0)‖2 for the initial guess θ0 = 0.2

using the constant Jacobian JC = 2. Table 1 shows the
information obtained in the minimization. In it we can

see how the algorithm converges to the minimum,
√
3,

in a few iterations.

Let us observe how the CJGN works. In each itera-

tion, it performs a standard GN step over the auxiliary

parameter φ, and then it translates this step into an
update of the target parameter θ, leaving the auxiliary

parameter unchanged. This is possible because of the

equivalence of the parameters. Moreover, thanks to the
independence of the parameters, the GN Jacobian re-

mains the same at the new point, and the procedure is

repeated (see Fig. 2).

The upper image in Fig. 2 shows the contour lines

of ‖r(θ, φ)‖2 and the behavior of the CJGN method in

the two-dimensional space (θ, φ). The dashed black line
indicates the pivot point of the auxiliary parameter φ0.

Blue points represent the values (θk, φ0), and white

points are the values (θk, φ0 +∆φk). The numbers be-

side each point indicate the iteration number.

Each iteration starts at a blue point. The blue arrow

shows the standard GN step over the auxiliary parame-
ter. The white arrow shows how the GN step is translated

into its canonical representation, leading to the starting

(blue) point of next iteration. Level set lines represent

the parameter equivalence classes. In each iteration, the
blue point and the white point of the previous iter-

ation must be on the same level set, i.e., both values

must belong to the same equivalence class. Moreover, all
canonical representations must lie on the dashed black

segment.

For example, in the first iteration, the algorithm

starts at blue point (0.2, 1). The parameter update gives

the white point (0.2, 2.48). Its canonical representation

is given by the blue point (2.2782, 1), and therefore it
is on the same contour line as (0.2, 2.48). The second

iteration starts at (2.2782, 1).

The bottom plot in Fig. 2 shows the cost function

E(θ) = ‖r(θ, φ0)‖2 when the auxiliary parameter is

fixed at the pivot point, that corresponds to the slice

under the dashed black line in the upper image. The
cost function at the pivot point is equal to the objec-

tive function E(θ), and the CJGN finds its minimum as

desired.
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Iteration θk r(θk, φ0) JC ∆φk φ0 +∆φk θk+1

0 0.2 −2.96 2 1.48 2.48 2.2782
1 2.2782 2.1904 2 −1.095 −0.9052 2.0493
2 2.0493 1.1994 2 −0.5997 0.4002 1.8329
3 1.8329 0.3597 2 −0.1798 0.8202 1.7414
4 1.7414 0.0323 2 −0.0162 0.9838 1.7321
· · ·
7 1.73205 < 1 · 10−15 2 < 1 · 10−15 1 1.73205

Table 1 Minimization of E(θ) = ||θ2 − 3||2 with the CJGN method. The residual function is r(θ, φ) = θ2 + φ2 − 4 with pivot
value φ0 = 1 and constant Jacobian JC = 2.

−3 −2 −1 0 1 2 3
θ

−3

−2

−1

0

1

2

3

φ

0 123φ0

Cost function |r(θ,φ)|2

−3 −2 −1 0 1 2 3
θ

0

5

10

15

20

25

30

35

40

E
(θ
)

0

1

2
3

Cost function E(θ) =|r(θ,φ0 )|2  at pivot point φ0 =1

Fig. 2 Example of the CJGN method with the residual func-
tion r(θ, φ) = θ2 + φ2 − 4. The isocontours in the top plot
represent the equivalence classes defined by r(θ, φ).

4 Efficient compositional image alignment

In this section we revisit the problem of compositional
image alignment. Our goal here is deriving an efficient

compositional image alignment approach within the CJGN

scheme. To this end we introduce the compositional and
the extended brightness constancy requirements as the

image alignment counterparts to the equivalent and in-

dependent parameters requirements of the CJGN scheme.
If these requirements are satisfied then the image align-

ment problem can be solved using a compositional ap-

proach featuring constant Jacobian and Hessian matri-

ces, since it is an instance of a CJGN scheme. Moreover,
we will also prove that this efficient compositional ap-

proach, termed EC, is actually the IC algorithm. So,

EC will not be a new compositional algorithm, but a
formal derivation of IC within the CJGN framework. In

this way will formally derive both IC and its necessary

requirements.

4.1 The Efficient Compositional (EC) algorithm

Our goal now is to optimize expression (2) using a CJGN

scheme. As explained in Section 3, we must first in-

clude an auxiliary parameter vector. The compositional
method introduced in Section 2 gives us a way of includ-

ing it, according to the compositional residual in (5).

We will use the point φ0, whose properties will be given
below, as pivot in the CJGN scheme.

Functions f and g are image warps which may be-

long to two different function families. The choice of
these function families is limited by the following re-

quirement.

Requirement 1 (Compositional Assumption) The

composition f ◦ g must be a f -warp, i.e., for any φ

and for any µ, there exists a µ′ such that f(X ,µ′) =

f(g(X ,φ),µ). Besides, there must be an identity g-warp

with parameters φ0 such that

X = g(X ,φ0). (9)

We will denote the Compositional Assumption as

CA.



Rationalizing Efficient Compositional Image Alignment 7

Proposition 1 When warps f and g satisfy the CA,

rc(µ, ∆φ) in (5) has equivalent parameters with pivot
point φ0.

Proof From the CA, for each µ and ∆φ, we can find

a µ′ such that

rc(µ, ∆φ) = I[f(g(X , ∆φ),µ), t+ 1]− T [X ]
= I[f(X ,µ′), t+ 1]− T [X ].

From (9),

I[f(X ,µ′), t+ 1]− T [X ] =
= I[f(g(X ,φ0),µ

′), t+ 1]− T [X ]
= rc(µ

′,φ0).

Subsequently, rc(µ, ∆φ) = rc(µ
′,φ0). ⊓⊔

The CA is equivalent to the closure under composi-
tion condition introduced in [3] when f and g belong to

the same function family. It is a necessary condition for

any compositional image alignment procedure, regard-
less of whether it features a constant Jacobian or not.

This is also the only requirement demanded by the FC

algorithm.

Unfortunately, the compositional residuals in (5) do

not have independent parameters. The Jacobian of rc(µ, ∆φ)

with respect to ∆φ depends on µ. We now show how
to get a first order approximation to the residuals that

features independent parameters. To this end, we must

introduce a new requirement.

Requirement 2 The result of an infinitesimal distur-

bance δφ in the (f ◦ g)-warped image with warping pa-
rameters µ at time t must be equal to the result of the

same displacement in the g-warped template image, i.e.,

for every (t,µ)

∂I[f(g(X ,φ),µ), t]
∂φ

∣

∣

∣

∣

φ=φ0

=
∂T [g(X ,φ)]

∂φ

∣

∣

∣

∣

φ=φ0

= J
ec.

Proposition 2 When Requirement 2 is satisfied, the

residual rc(µ, ∆φ) in (5) can be linearly approximated

by the efficient compositional residual rec(µ, ∆φ) = e(µ)+
J
ec∆φ, where e(µ) is given by (8), that features inde-

pendent parameters.

Proof We can approximate the first term in the right

hand side of (5) with a first order Taylor series expan-
sion around φ0 and tτ , where tτ is a time instant such

that the brightness constancy assumption is satisfied

for the motion parameters µ reached at the iteration τ

in the minimization (3), t ≤ tτ ≤ t+ 1.

I[f(g(X , ∆φ),µ), t+ 1] =

I[f(X ,µ), tτ ]

+
∂I[f(g(X ,φ),µ), tτ ]

∂φ

∣

∣

∣

∣

φ=φ0

∆φ

+
∂I[f(X ,µ), t]

∂t

∣

∣

∣

∣

t=tτ

(t+ 1− tτ )

+ o(∆φ, (t+ 1− tτ ))
2.

(10)

This linear approximation is valid if ∆φ and (t +

1 − tτ ) are small. We can then make the additional

approximation

∂I[f(X ,µ), t]
∂t

∣

∣

∣

∣

t=tτ

(t+ 1− tτ ) =

I[f(X ,µ), t+ 1]− I[f(X ,µ), tτ ]
+ o(t+ 1− tτ )

2

(11)

From (11) and (10) we get

I[f(g(X , ∆φ),µ), t+ 1] =

I[f(X ,µ), t+ 1] + J(µ, tτ )∆φ

+ o(∆φ, (t+ 1− tτ ))
2,

(12)

where

J(µ, tτ ) =
∂I[f(g(X ,φ),µ), tτ ]

∂φ

∣

∣

∣

∣

φ=φ0

.

If Requirement 2 is satisfied we can safely replace

in (12) the Jacobian J(µ, tτ ) with the constant Jacobian

J
ec.

We then obtain an approximation to the warped
image at the iteration τ in the minimization (3) with

a mapping that depends only on ∆φ. Introducing this

result in (5) and discarding the infinitesimals of order
two and higher we obtain the expression for the efficient

compositional residuals

rec(µ, ∆φ) = I[f(X ,µ), t+ 1]− T [X ] + J
ec∆φ

= e(µ) + J
ec∆φ,

(13)

The Jacobian of rec(µ,φ) in (13) with respect to the

local parameter at the pivot point is given by

∂rec(µ,φ)

∂φ

∣

∣

∣

∣

φ=φ0

= J
ec,

that does not depend on µ. Hence, the efficient compo-
sitional residuals have independent parameters. ⊓⊔

To better understand this requirement we introduce

the following lemma.
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Lemma 1 Let ∆φ be a small increment in the param-

eters of the local warping function g. If and only if
Requirement 2 is satisfied, then, up to a first order

approximation, the Brightness Constancy Assumption

also holds for the set of points X ′ = g(X , φ0 +∆φ).

Proof The BCA for the set of points X ′ is given by

I[f(X ′,µ), t] = T [X ′], (14)

that can also be expressed as

I[f(g(X ,φ0 +∆φ),µ), t] = T [g(X ,φ0 +∆φ)]. (15)

The first order Taylor series expansion of the first term
in (15) is given by

I[f(g(X ,φ0 +∆φ),µ), t] =

= I[f(X ,µ), t]

+
∂I[f(g(X ,φ),µ), t]

∂φ

∣

∣

∣

∣

φ=φ0

∆φ+ o(∆φ)2.

(16)

Similarly, the first order Taylor series expansion of the
second term in (15) is given by

T [g(X ,φ0 +∆φ)] =

= T [X ] + ∂T [g(X ,φ)]
∂φ

∣

∣

∣

∣

φ=φ0

∆φ+ o(∆φ)2.

(17)

The equality of the first terms on the right hand
side of (16) and (17) is proved by the BCA.

Proving the necessity and sufficiency is now trivial.
If Requirement 2 is satisfied, then up to a first order

approximation, (14) holds. Conversely, if (14) holds,

then (16) and (17) must be equal, and consequently

Requirement 2 must be satisfied. ⊓⊔

Lemma 1 provides an alternative and more intu-

itive expression for Requirement 2, given by (15), that

together with (1) may be interpreted as an Extended
Brightness Constancy Assumption (EBCA). The EBCA

is an assumption stronger than the BCA, since it entails

the equality of both image values and gradients. This is
the key assumption for achieving efficiency in GN-based

image alignment approaches, since the gradient of the

incoming image may be expressed in terms of that of
the template, that is constant.

The residuals of any image alignment problem whose

warping function satisfies the CA and the EBCA have
both equivalent and independent parameters. In this

case, it is possible to optimize the image alignment ob-

jective function in equations (2) and (3) with an efficient

GN scheme featuring constant Jacobian and Hessian ma-

trices using the EC algorithm, an instance of the CJGN

scheme introduced in Section 3. The EC algorithm is

listed in Algorithms 4 and 5. In Algorithm 4 we com-

pute the generalized inverse of the constant Jacobian
matrix J

ec, that may be computed off-line. Algorithm 5

optimizes (3) for the image at time t + 1 starting at

a previous known estimation of the tracking parame-
ters µ and using the constant Jacobian computed in

the off-line stage.

Algorithm 4 Efficient compositional algorithm (off-
line stage)

1: Compute template gradient : ∇T← ∂T [x]

∂x

∣

∣

∣

x=X

2: Evaluate g-warp Jacobian: G← ∂g(X ,φ)

∂φ

∣

∣

∣

φ=φ0

3: Compute constant Jacobian J
ec = ∇T G

4: Compute the GN Hessian H
ec = (Jec)⊤J

ec

5: Compute the pseudo-inverse (Jec)+ = (Hec)−1(Jec)⊤

Algorithm 5 Efficient compositional algorithm for im-

age It+1 from an initial estimation µ (on-line stage)
1: repeat
2: Compute image residual e(µ) from (8)
3: Compute local parameters ∆φ = −(Jec)+r(µ,φ0)
4: Update global parameters µ: (µ′,φ0) ∼ (µ,φ0 +∆φ),

i.e. f(X ,µ)← f(g(X ,φ0 +∆φ),µ)
5: until ‖∆φ‖ < ǫ

4.2 On the relation between EC and IC

Any compositional image alignment scheme that satis-

fies the CA may be optimized using the FC algorithm.

We have just proved that if it also satisfies the EBCA,
then it can be optimized with an efficient algorithm us-

ing the EC approach. The IC algorithm [3] is an alterna-

tive efficient compositional approach. Here we analyze

the relation between the IC and EC algorithms.

Proposition 3 The residuals of IC, ric in (6), and

those of EC, rec in (13), are the same, up to a first

order approximation.

Proof Assuming g−1 ≡ h, we can rewrite (6) as

ric(µ, ∆µ) = I[f(X ,µ), t+ 1]− T [g−1(X , ∆φ)]. (18)

Making a first order Taylor series expansion of the
second term of (18) at φ0 and using the derivative of

inverse warps (see Appendix A) we get

T [g−1(X , ∆φ)] = T [X ]− ∂T [g(X ,φ)]
∂φ

∣

∣

∣

∣

φ=φ0

∆φ+o(∆φ)2.
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(19)

Replacing (19) in (18) and discarding higher order

terms we get the first order approximation to the IC

residuals

ric(µ, ∆φ) = I[f(X ,µ), t+ 1]− T [X ] + J
ec∆φ,

that coincides with the EC residuals rec in (13). ⊓⊔

So, EC and IC approaches have identical residuals,

up to a first order approximation, and both feature con-

stant Jacobian and Hessian matrices. Moreover, if we

compare the IC algorithm 1 and 2 with EC 4 and 5
we can see that they are actually the same algorithm.

Hence, we can consider EC as a formal derivation of IC

within the CJGN scheme.

4.3 On the relation between FC and IC

In their seminal work, Baker and Matthews claim that

FC and IC are equivalent algorithms [3]. However, we

have just proved that any alignment problem satisfying

the CA requirement can be solved using the FC algo-
rithm, whereas to use the IC it must also satisfy the

EBCA. So, in general, they cannot be equivalent.

Proposition 4 If the EBCA is satisfied, then the resid-

uals of the FC algorithm, rc in (5), and those of the IC

algorithm, ric in (6), are equal, up to a first order ap-
proximation.

Proof If the EBCA is satisfied, we can rewrite the FC

residual in (5), as

rc(µ, ∆φ) = I[f(g(X ′, ∆φ),µ), t+ 1]− T [X ′]. (20)

We may then introduce the change of variables X ′ =

h(X , ∆φ);X = g(X ′, ∆φ) in (20) to reach (6), the

residuals of the IC algorithm. ⊓⊔

Hence, if the EBCA is satisfied, rc = ric, up to a
first order approximation. Thus, optimization (3) would

be the same for both approaches. In this case we can

make the compositional trick and efficiently minimize
the residuals of a compositional warping function using

IC. Hence, FC and IC are equivalent, i.e. perform the

same steps and reach the same solution, if the EBCA

is satisfied.

So, what is wrong with the compositional trick? It
is based on the following change of variables, X ′ =

g(X , ∆φ). If we introduce that change of variables in (5)

we get

rc(µ, ∆φ) = I[f(X ′,µ), t+ 1]− T [g−1(X ′, ∆φ)], (21)

that is almost like ric in (6), except for the domain

in which it is defined, X ′. From a practical point of
view (21) is useless for solving an alignment problem,

since X ′ and ∆φ are both unknown. To obtain a useful

expression, such as (6), the IC algorithm assumes that
X ≈ X ′, up to a zeroth order approximation (see [3]

Section 3.2.5).

It is easy to find a counterexample to the assump-

tion X ≈ X ′, since, in general, X 6= X ′ no matter how

small is ∆φ. Suppose that the object to be aligned is a
square region on a 3D plane rotating around one axis,

such that x ∈ V ⊂ R
3 (see Fig.3(right)). The assump-

tion X = X ′ only holds along the rotation axis. The
distance between corresponding points in X and X ′ is

larger the further away from the axis. For any ∆φ, we

can always find points x ∈ X and x′ = f(x, ∆φ) ∈ X ′

that are arbitrarily distant. So, for this simple example,

X 6= X ′.

Moreover, although the BCA holds for X , this does
not guarantee that it also holds for X ′. In general,

I[f(X ′,µ), t] 6= T [X ′]. Hence, we cannot replace X by
X ′ in (21) to obtain the IC residuals (6). However, when

the EBCA is satisfied, if the BCA holds for X then it

must also hold for X ′. In this case we can safely replace

X for X ′ in (21) to obtain (6).

4.4 Geometrical interpretation of the EBCA

The geometrical intuition behind the EBCA implies

that a small g-warped increment in the warping pa-

rameters of the support set, X ⊂ V, generates a new

support set X ′ that is also contained in V so that both,
X and X ′, satisfy the BCA. Intuitively, this happens

for most warps when V is an open set, for example a

2D image in R
2 or a 3D image stack in R

3. Otherwise,
for example in 2.5 image alignment, since V is a surface

embedded in R
3, the set of warps is more restrictive.

A simple example of this situation is given by a square
planar object sliding along itself (see Fig. 3(left)). In

this case, the sets of points X and X ′ are in the plane

containing the template. Hence, the EBCA is satisfied

(see Appendix B for a proof).

4.5 EC/IC and linear regression

Alignment approaches based on linear regression are

also an instance of a CJGN scheme. The iterative solution

for the minimization of residual (6) given by (7), defines

a constant linear relation between the local parame-
ter vector, ∆φ, and the errors (8), e(µ), given by A =

−(Hic)−1(Jic)⊤. Approaches to image alignment based

on linear regression learn the constant linear mapping
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Fig. 3 Different motions of a 3D plane. (left) A 3D plane sliding along itself. The motion warp satisfies the EBCA, hence,
the sets of points X (yellow dots) and X ′ (red dots) belong to the same domain V ⊂ R

3. (right) A plane rotating ∆φ degrees.
Yellow marks represent points x ∈ X ⊂ V. Red marks represent points x′ ∈ X ′ ⊂ V′

matrix, A, as the solution of a least-squares problem

between a random set of warping parameters and its

associated set of error residuals [21,35,18,20,19]. As
proved in this section, this constant linear mapping

is valid if the minimization problem features equiva-

lent and independent parameters. Hence, tracking tech-
niques based on linear regressors must also satisfy these

requirements.

5 Experiments

The goal of the experiments performed in this section

is evaluating efficient and non-efficient image alignment
algorithms assessing the impact of the satisfaction of

the CA and the EBCA in the performance. To this end,

we consider of a set of alignment problems with different
degrees of complexity and use optimization algorithms

satisfying all or some of the requirements.

5.1 Evaluation framework

Problems dealing with the alignment of a pair of images

have traditionally been grouped into short- and wide-
baseline, depending on the distance between the two

aligned images. Efficient image alignment techniques

involve a third image in the optimization process, the

template. It is the image where we compute the constant
Jacobian used in the optimization. Hence, efficient im-

age alignment algorithms introduce a new categoriza-

tion depending on whether the template is close to the

two aligned images or far from any of them. In each of

these cases we say that we are respectively in a short-

or wide-baseline Jacobian setting.

In a registration problem the template often coin-

cides with one of the two aligned images (see Fig. 4(top)).

Hence, it would imply a short- or wide-baseline Jaco-
bian setting depending on whether the aligned images

are short- or wide-baseline. On the other hand, tracking

problems are normally considered short-baseline, since

usually the distance between two consecutive images in
the sequence is small. However, the efficient alignment

solution entails a wide-baseline Jacobian, since the tem-

plate is usually an image acquired from a very different
point of view, e.g. the first image in the sequence (see

Fig. 4(bottom)).

The evaluation framework used in [3] has become

a standard in image alignment problems [14,8,25,33].
It uses a fixed region in the image, typically a square,

as template where the Jacobian is computed. Then this

region is randomly distorted and aligned back to the
template. This setup models a typical registration prob-

lem that only involves short-baseline Jacobian settings.

Hence, it is not adequate for evaluating tracking algo-
rithms.

In this section we introduce a new image alignment

evaluation framework that involves both short- and wide-

baseline Jacobian settings.
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Non-Efficient Algorithms Efficient Algorithms

Jacobian location Initialization Jacobian location Initialization

Fig. 4 Short- and Wide-baseline Jacobian. Legend:blue, location where the Jacobian is computed; pink, initial point of
the optimization; and green, actual optimum. (Top-left) Non-efficient registration naturally uses a short-baseline Jacobian:
the Jacobian is computed at the initial point of the optimization. (Bottom-left) Non-efficient tracking uses a short-baseline
Jacobian: the Jacobian is computed at the previous estimation of the optimum. Efficient registration and efficient tracking
compute the Jacobian at the template. (Top-Right) Efficient registration typically uses a short-baseline Jacobian. (Bottom-
Right) Efficient tracking uses a wide-baseline Jacobian.

5.2 Experimental setup

We evaluate the three optimization algorithms described

in Section 2, LK, FC, and IC. We proved in Section 4 that

EC and IC approaches are the same algorithm. Their
performance for all the experiments in this section was

indistinguishable. Hence here we will only refer to IC.

We perform our tests with a synthetically generated
textured plane depicting four Gaussian-based gradient

patterns (see Fig. 5). This is a good texture for direct

registration [6]. The size of the images is 640× 480 pix-
els in which the textured pattern occupies a square of

272 × 272 pixels. In our experiments, we generate the

synthetic images of a moving plane with a set of warp-
ing functions. We have selected three warping functions

that satisfy some or all of the requirements in Section 4:

– 3DRT. Points in the plane are defined in Euclidean

3D space, x ∈ R
3. This is the standard six-degrees-

of-freedom rigid body motion warp for a planar sur-
face in 3D, 3DRT:R3 → R

3. It satisfies the CA, since

the composition of rigid motions is also a rigid mo-

tion. However, it does not satisfy the EBCA.
– H6. Here points are in 2D, x ∈ P

2. The motion is

defined by a homography parametrized by the ro-

tation and translation parameters representing rel-

ative camera orientation, H6:P2 → P
2. This function

satisfies the EBCA, but since it is not closed under

composition it fails to satisfy the CA. In this model

we perform the parameter update as described in [12].

– H8. Here, points are also in 2D, x ∈ P
2. The motion

is defined by the standard eight-degrees-of-freedom

homography, H8:P2 → P
2. This warping function is

closed under composition and satisfies both the CA

and the EBCA.

In our experiments we combine an optimization al-

gorithm —LK, FC and IC— with a warping function—
H8, H6, and 3DRT. We denote it by appending the warp-

ing function name to the algorithm. We have selected

the following combinations lkh8, ich8, lkh6 and fc3drt

because they comprise additive, compositional and ef-
ficient compositional algorithms that satisfy all their

requirements. Finally, we have also selected ich6 and

ic3drt because they are efficient compositional algo-
rithms that do not satisfy the CA and the EBCA, re-

spectively. Table 2 summarizes the experiments.

We evaluate the performance of each experiment
with a set of quantitative features:

– The image re-projection error,

ε(µ̂) =
1

N
‖p(f(X ; µ̂))− p(f(X ;µ∗))‖,

measures the accuracy of the results, i.e. how close

are the estimated parameters µ̂ from the actual op-

timum, µ∗.

– The optimization time, measured in seconds, gives
us information about the efficiency.

– The frequency of convergence gives us information

about the robustness of an algorithm.
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– The rate of convergence informs us about how many

iterations are required for the algorithm to converge
to the optimum.

We evaluate the selected algorithms by registering

the template to an image. All the selected optimiza-
tion algorithms are based on a GN scheme, where the

derivatives are numerically computed using central dif-

ferences. The minimization starts at µ0. It stops when

it reaches 50 iterations or when the increment to the
parameters is negligible, that is, ‖|µt+1 − µt‖| ≈ 0. n

5.3 Datasets

We generate 48 000 experimental tests to evaluate the

selected algorithms. Each experiment comprises an im-

age of the textured plane with random pose, and the

initial guess µ0 for the GN optimization. The ground-
truth parameters µ∗ represent the pose at which the

textured plane is rendered.

We organize these 48 000 synthetic experiments in
three datasets, DS1, DS2, and DS3, with 16 000 trials

each. These datasets simulate the experimental condi-

tions in short- and wide-baseline Jacobian problems.
We choose a fixed location in the space of parameters,

µ
J
, where we compute the Jacobian. For each dataset,

we generate ground truth target positions µ∗ sampling

from a uniform distribution with support region Ψ∪−Ψ
around µ

J
, where Ψ = (a, b) and −Ψ = (−b,−a), and

the range (a, b) is defined in Table 3. We establish the

plane pose with two distributions: ΨR for the rotation
angles, and Ψt for translation parameters (see Table 3).

These distributions describe non-overlapping regions in

the parameter space centered in µ
J
. From these values

we can see that the dataset DS1 represents a short-

baseline Jacobian problem. The dataset DS3 is a wide-

baseline Jacobian problem. Finally, DS2 is a transition

between short- and wide-baseline Jacobian problems
(see Fig. 5).

We randomly compute the initial guess for the op-

timization as a random displacement from µ∗ driven
by a normal distribution, µ0 ∼ N (µ∗, Σ), where Σ is

the covariance matrix for the motion parameters. We

assume that all motion parameters have the same vari-
ance σ, Σ = σI, where σ takes values between 0.5 and

4.0. This means that the average initial re-projection er-

ror for our experiments varies approximately between 2

and 20 pixels (see Table 4). We generate 48000 ground
truth and starting points pairs following Algorithm 6.

The ground truth parameters are also used to render

48 000 images of the moving plane using POVRAY.

Dataset ΨR Ψt

DS1 (0, 10) (0, 10)
DS2 (0, 30) (0, 20)
DS3 (30, 50) (20, 30)

Table 3 Ranges of parameters for synthetic datasets.

Algorithm 6 Creating the synthetic datasets.

1: for τ in {DS1,DS2,DS3 } do
2: for σ = 0.5 to 4.0 step 0.5 do
3: for i = 1 to 2 000 do
4: Randomly sample the rotation Euler angles

∆(i) ∼ (Ψτ
R
∪ −Ψτ

R
) for ∆ = {α, β, γ}.

5: Randomly sample the translation parameters
∆(i) ∼ (Ψτ

R
∪ −Ψτ

R
) for ∆ = {tx, ty, tz}.

6: Store the ground truth sample

µ∗

i = (α(i), β(i), γ(i), t
(i)
x , t

(i)
y , t

(i)
z )⊤.

7: Generate the corresponding initial guess with

Gaussian noise, µ
(i)
0 ∼ N (µ∗, Σ).

8: end for
9: end for
10: end for

5.4 Plots

For each algorithm, we run the 48 000 trials with the

same experimental conditions: starting point of the op-
timization, ground truth parameters, and textured plane

image. In each experiment we record the image re-projection

error at each iteration of the optimization loop and the
total time used in the optimization. For each dataset,

we generate four plots with these data:

– Accuracy plot. We plot the average final image re-

projection error per noise value, for those experi-

ments that successfully converged.

– Robustness plot. We plot the percentage of converged
experiments for each noise value. This provides us

with information about the frequency of convergence

of each algorithm.
– Efficiency plot. We plot the average execution time

against noise values for the whole optimization.

– Rate of convergence plot. We plot the average re-
projection error for each iteration of the algorithms,

for those experiments for which the optimization

successfully converged. In this case, we limit the it-

erations to 6 to ease the visualization.

We consider that an algorithm has successfully con-
verged (i.e., the algorithm has reached an acceptable

solution) if the final re-projection error is below five

pixels. To provide a fair comparison, we only plot the

results from those experiments that successfully con-
verged for all the algorithms simultaneously. This as-

sumption eliminates non-significant extreme values that

could bias the average error or timing plots. Obviously,
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Table 2 Summary of experiments performed

Algorithm Warp Update Constant Jacobian CA EBCA
lkh8 8-dof homography Additive No — —
ich8 8-dof homography Compositional Yes YES YES
lkh6 6-dof homography Additive No — —
ich6 6-dof homography Compositional Yes NO YES

fc3drt rigid motion in R
3 Compositional No YES —

ic3drt rigid motion in R
3 Compositional Yes YES NO

D
S
1

D
S
2

D
S
3

Fig. 5 Distribution of Synthetic Datasets. We select different samples from each dataset. Datasets range from DS1
(Top), DS2 (Middle), and DS3 (Bottom), according to Table 3. The top-left image represents the position where we
compute the Jacobian for efficient methods. Observe how the successive ground truth samples increasingly depart from this
location representing a wide-baseline Jacobian setting.

this assumption does not apply to the percentage of

convergence plot, in which we use all data.

5.5 Results

Dataset DS1 We present the results for dataset DS1 in

Fig. 6. The robustness plot for this dataset shows that

for initialization noise level σ < 2, that implies an aver-
age initial error of about 10 pixels for the template (see

Table 4), all algorithms converge similarly and close to

100% of the experiments. However, for higher initializa-

tion errors, ich6, that does not satisfy the CA has the
lowest percentage of convergence, 65% of the experi-

ments for σ = 4. Efficient alignment algorithms ic3drt

and ich8 converge slightly better, even though ic3drt

does not satisfy the EBCA. In this case, the IC approx-

imation to the actual Jacobian is good enough for the

short-baseline case. For these algorithms, when σ = 4,
80% of the tests successfully converge. Finally, non-

efficient algorithms fc3drt,lkh6,lkh8 converge close

to 100% also for the highest noise levels.

The accuracy plot confirms that, for those experi-
ments of this dataset that successfully converged, the

final accuracy of all algorithms is quite similar and does

not depend on the initialization.

The convergence rate of all algorithms is similar.

However, the convergence time is quite different and de-

pends on the efficiency of the algorithm. All efficient al-

gorithms have similar convergence times. Non-efficient
algorithms, fc3drt,lkh6,lkh8, have a notably larger

convergence times, being fc3drt the slowest algorithm.

Dataset DS2 We present the results for dataset DS2 in

Fig. 7. For small to moderate initialization noise lev-

els, σ < 2, the robustness plot shows that 100% of the
experiments converge for those algorithms that satisfy

their requirements (lkh6, lkh8, fc3drt and ich8).

For these algorithms, when the initialization noise is
very high, σ > 2, i.e. an average initial error between 10

and 20 pixels, the performance of ich8 degrades faster

than that of non-efficient approaches. Finally, the con-
vergence rate of those efficient algorithms that do not

satisfy some requirement (ich6 and ic3drt) is notably

worse than the rest, even for small initialization noise

levels.

Again, the accuracy of all algorithms is similar for

those registration procedures that successfully converged.
However, on average worse than that of dataset DS1.

The rate of convergence plot shows that all algorithms

have similar convergence rates. The convergence time
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Fig. 6 Results from dataset DS1 . (Top-left) Accuracy plot : average re-projection error against noise standard deviation.
(Top-right) Robustness plot : average frequency of convergence against noise. (Bottom-left) Efficiency plot : average conver-
gence time against noise standard deviation.(Bottom-right) Convergence plot : Average re-projection error against number
of iterations.

is again larger for non-efficient algorithms (lkh6,lkh8,

and fc3drt).

Dataset DS3 Fig. 8 shows the results for dataset DS3.
Here we exclude the ich6, and ic3drt algorithms from

the accuracy, efficiency and rate of convergence plots,

since their poor convergence could bias the results.

In the robustness plot we can clearly see three groups
of algorithms. The efficient algorithms that do not sat-

isfy some requirement (ic3drt, ich6) do not converge

for any noise level. The efficient algorithm that satisfies
its requirements (ich8) has a good convergence, above

80% of the experiments, for small to medium noise level,

σ < 2. But it degrades for very high noise levels con-
verging only 50% of the experiments for σ = 4. Non-

efficient algorithms, lkh8, lkh6 and fc3drt, converge

for 98% of the experiments.

As for previous datasets, the accuracy is similar for
all algorithms, but worse than that of DS1 and DS2.

The rate of convergence is also similar for all algo-

rithms. However, the convergence time is different and

depends on the efficiency of the approach. The timing

results also show that all algorithms require more iter-
ations to converge than in previous datasets. The total

number of iterations is approximately 60% higher than

that for dataset DS2.

6 Discussion

We first consider the impact of the satisfaction of the
requirements introduced in Section 4 on the perfor-

mance of efficient compositional image alignment ap-

proaches. Then we will further particularize the discus-

sion to some typical computer vision situations such
as registration, tracking and 3D surface alignment. We

end this section with a discussion on the novelty of the

CA and EBCA requirements.
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Fig. 7 Results from dataset DS2 . (Top-left) Accuracy plot : average re-projection error against noise standard deviation.
(Top-right) Robustness plot : average frequency of convergence against noise. (Bottom-left) Efficiency plot : average conver-
gence time against noise standard deviation.(Bottom-right) Convergence plot : Average re-projection error against number
of iterations.

Table 4 Average template corner re-projection error (in pix-
els) vs. parameter noise for the three datasets used in the
experiments.

σ 0.50 1.00 2.00 3.00 4.00
DS1 2.44 4.74 9.58 14.57 18.96

DS2 2.38 4.79 9.59 14.09 18.95

DS3 2.52 4.97 9.92 15.28 20.24

6.1 Impact of the satisfaction of requirements

Effects on the frequency of convergence. From our ex-

periments we can group the algorithms into three classes

based on their frequency of convergence. Non-efficient
algorithms, lkh8, lkh6 and fc3drt have the best fre-

quency of convergence, above 95%, in all alignment set-

tings. The efficient algorithm that satisfies its require-

ments, ich8, forms the second class. It has the second
best frequency of convergence, that degrades the larger

the initialization noise and the wider the Jacobian base-

line setting. Finally, efficient algorithms that do not

satisfy their requirements, ich6, and ic3drt, have the

worst frequency of convergence. In a wide baseline Ja-
cobian setting they do not converge at all.

The frequency of convergence of efficient algorithms
that satisfy their requirements degrades faster than their

non-efficient counterparts the wider the Jacobian base-

line setting. The reason for this behavior is that the
proof of equivalence given in Section 4 is correct only up

to a first order approximation. In addition, the compu-

tation of the Jacobian in an image far from that where

the optimization takes place introduces aliasing prob-
lems that hamper the correct estimation of the Jacobian

and, hence, the optimization.

When an efficient algorithm does not satisfy its re-

quirements, the descent directions obtained with a con-

stant Jacobian are approximately correct in a short
baseline Jacobian setting, i.e. the setup in DS1. How-

ever, they quickly become incorrect as µ
J
drives off µ.

This is the situation in a wide baseline Jacobian setting,
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Fig. 8 Results from dataset DS3 . (Top-left) Accuracy plot : average re-projection error against noise standard deviation.
(Top-right) Robustness plot : average frequency of convergence against noise. (Bottom-left) Efficiency plot : average conver-
gence time against noise standard deviation.(Bottom-right) Convergence plot : Average re-projection error against number
of iterations.

i.e. the setup in DS3, for which these algorithms do not

converge at all, no matter how good is the initialization.

Effects on accuracy. The results show that when the

optimization converges, all algorithms have similar ac-

curacy. The final accuracy is also very similar, for all
values of the initialization noise. Hence, the requirement

satisfaction and initialization noise do not affect the fi-

nal accuracy of the algorithm. However, it is affected by
the distance between µ

J
and µ∗. In wide-baseline Ja-

cobian settings, the final re-projection error is slightly

larger than in short-baseline settings.

6.2 Efficient Registration and Tracking

Registration problems are often posed in sort-baseline

Jacobian settings, such as those in DS1. In this case,
with moderate initialization noise, the satisfaction of

the CA and EBCA by the efficient compositional im-

age alignment approach is not critical. Alignment ap-

proaches, either efficient or not, have similar conver-

gence properties and final re-projection error. The rea-
son for this behavior is that in a short-baseline Jacobian

situation the first order approximation to the residu-

als obtained with the constant Jacobian is close to the
real one and, hence, the descent directions computed

with it are approximately correct. However, when the

initialization noise level is very high, we are not in a

short-baseline Jacobian situation anymore. In this case,
the first order approximation is not good and efficient

algorithms converge less frequently than non-efficient

ones. Efficient algorithms that do not satisfy the re-
quirements have the worst convergence. As a conse-

quence, in typical short-baseline Jacobian image reg-

istration problems, the impact of the requirement sat-
isfaction in the performance of an efficient alignment

approach depends, basically, on the quality of the ini-

tialization.

A registration problem arising often in computer vi-

sion consist in aligning a 3D mesh model to an image,



Rationalizing Efficient Compositional Image Alignment 17

known as 2.5D alignment. In general, 2.5D alignment

problems do not satisfy the EBCA. However, depending
on the mesh structure and the degrees of freedom of the

warping function, there are special situations in which

the EBCA is satisfied, for example, aligning the mesh of
a 3D plane sliding along itself (see Fig. 3(left) and Sec-

tion 6.3). In a short-baseline Jacobian 2.5D alignment

problem, the satisfaction of the algorithm requirements
may not be critical. Hence, we can use an efficient image

alignment algorithm if we have a good starting point for

the optimization. Romdhani and Vetter [31] align a face

3D morphable model to a target image using an IC ap-
proach. Since their model does not satisfy the EBCA,

they improve the convergence of the minimization by

computing several Jacobians off-line and selecting the
one closest to the optimization point, hence, placing

their minimization in a short-baseline Jacobian setting.

Similarly, Xu and Roy-Chowdhury [34] also place their
alignment problem in a short-baseline setting by recom-

puting the optimization Jacobian.

Excluding the simplest cases, general tracking prob-

lems result in a wide-baseline Jacobian setting. The
alignment results of DS3 prove that the satisfaction of

the CA and the EBCA by an efficient alignment algo-

rithm are critical. Hence, efficient image alignment ap-
proaches that do not satisfy their requirements cannot

be used in typical tracking problems. However, efficient

alignment approaches that satisfy their requirements
can be safely used with low or moderate initialization

noise.

6.3 On the novelty of the CA and the EBCA

In their series of works, Baker, Matthews and colleagues

also study the requirements that a warping function

must satisfy so it can be used within an IC scheme. First
they require that the sets of warps contain the identity

warp and be closed under inverse composition [3]. This

requirement is equivalent to the CA that we introduced

in Section 4.
Later, they also introduced a requirement concern-

ing the satisfaction of the BCA on the target, X , and
on an infinitesimal neighborhood around it [4,24]. The
EBCA introduced in Section 4 is a generalization of

it since it requires the satisfaction of the BCA on the

target, X , and on an infinitesimal neighborhood of the
g-warped target, X ′ = g(X , ∆φ). The EBCA is more

general because it considers the case in which the warp-

ing function constrains the motion of the target to lie on

the target domain, V. In that case the gradients of the
incoming image and the template can be swapped. For

example, we can consider again the problem of track-

ing a square planar target sliding along itself and with

x ∈ V ⊂ R
3 (see Fig. 3(left)). This problem does not

satisfy the requirement introduced by Baker, Matthews
and colleagues [4,24] since the BCA is not satisfied in

an infinitesimal neighborhood outside of the plane V.
However, it does satisfy the EBCA (see Appendix B
for a proof).

7 Conclusions

In this paper we have studied what makes computa-
tional efficiency afforded in GN-based non-linear least-

squares optimization. We have introduced the concepts

of equivalent and independent parameters for residual
functions with two sets of parameters. We have proved

that any function of residuals with equivalent and inde-

pendent parameters may be efficiently optimized using
a CJGN approach that features constant Jacobian and

Hessian matrices.

We have considered the optimization problem in the

context of image alignment. We proved that an align-
ment problem posed compositionally has equivalent pa-

rameters. It can then be solved with the FC algorithm.

We have also introduced the EBCA, an extension of the
well known BCA that enforces the equality of image val-

ues and gradients. We proved that an alignment prob-

lem that satisfies the EBCA has independent param-
eters. Hence, it can be efficiently solved using a CJGN

scheme, an instance of which is the IC algorithm. As a

consequence, FC and IC approaches are equivalent when

the EBCA is satisfied.
The standard image alignment evaluation procedure,

based on contaminating with noise the location of an

image region and warping it back, is not adequate for
studying the performance of efficient tracking algorithms,

because it only contemplates the optimization problem

from a local point of view. To address this issue we
have introduced a new evaluation procedure, based on

the the concepts of short- and wide-baseline Jacobian

settings, that also considers the proximity of the tem-

plate to the aligned images.
If the CA or EBCA are not satisfied, the conver-

gence of an efficient GN-based alignment problem may

be compromised, depending on the configuration of the
images involved. In a wide-baseline Jacobian setting the

optimization will diverge, no matter how close from the

optimum it starts. However, in a short-baseline Jaco-
bian setting it may converge if it has a good initializa-

tion.

Alignment approaches based on linear regression are

also an instance of a CJGN scheme. Hence, they also
require that the equivalent and independent parameters

assumptions are satisfied. Otherwise, they behave like

any efficient GN-based alignment algorithm.
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A Derivative of inverse warps

Let f(x,φ) be a warp function and f−1(x,φ) its inverse,
such that f(f−1(x,φ),φ) = x, where φ is a small distur-
bance around the identity warp, φ0. The derivative of this
expression with respect to φ is

∂f(f−1(x,φ),φ)

∂φ

∣

∣

∣

∣

φ=φ0

=
∂x

∂φ
= 0,

that can be expanded using the chain rule:
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∣

∣

∣

∣
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+
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∣

∣

∣

∣
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·
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∣

∣

∣

∣
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= 0.

As f(x,φ0) is the identity warp,

∂f(x,φ)

∂φ

∣

∣

∣

∣

φ=φ0

+
∂f−1(x,φ)

∂φ

∣

∣

∣

∣

φ=φ0

= 0.

Finally,

∂f(x,φ)

∂φ

∣

∣

∣

∣

φ=φ0

= −
∂f−1(x,φ)

∂φ

∣

∣

∣

∣

φ=φ0

.

B In-plane translation

We consider the case of a plane π that moves perpendicular
to its normal n at a distance d from the origin. The set of
points of the plane are V = {x ∈ R

3 : n⊤x+d = 0}, that is a
two-dimensional surface embedded in R

3, and therefore, it is
a closed set. The support set is a finite subset of V, X ⊂ V.

The in-plane translation has two degrees of freedom. Thus,
the pair of warps f and g are parametrized respectively by
µ ∈ R

3 and ∆φ ∈ R
2. The two warps are f(x,µ) = x + µ

and g(x,∆φ) = x + [u v] · ∆φ, where u,v ∈ R
3 are two

independent vectors perpendicular to n.
We will prove that this system satisfies both the CA and

the EBCA. The CA states that, for any µ and ∆φ, there ex-
ists a µ′ such that f(x,µ′) = f(g(x, ∆φ),µ). This is trivially
proved taking µ′ = µ + [u v] · ∆φ. The identity g-warp is
obtained for ∆φ0 = [0 0]T .

To prove the EBCA, we write the expression for Require-
ment 2

∂I[x, t]
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∣

∣

∣

x=f(X ,µ)

·
∂f(x,µ)
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∣

∣

∣

∣
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·
∂g(X ,φ)
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∣

∣

∣

φ=φ0

=
∂T [x]
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∣

∣

∣

∣

x=X

·
∂g(X ,φ)

∂φ

∣

∣

∣

∣

φ=φ0

.

(22)

The derivative of the f -warp with respect to x is the 3 × 3
identity. Also, the derivative of the g-warp with respect to ∆φ

is [u v]. Therefore, (22) becomes

∂I[x, t]

∂x

∣

∣

∣

∣

x=f(X ,µ)

· [u v] =
∂T [x]

∂x

∣

∣

∣

∣

x=X

· [u v]. (23)

We do not know I nor T but, thanks to the brightness con-
stancy assumption, we know a relation between them I[f(x,µ), t] =
T [x], ∀x ∈ V. The partial derivatives of two functions that

are equal in a closed subset V of their domain are not, in gen-
eral, equal in that subset. However, the partial derivatives
projected onto V are equal. Thus, given a projection matrix
Π onto the plane V we have that:

∂I[x, t]

∂x

∣

∣

∣

∣

x=f(X ,µt)

·Π =
∂T [x]

∂x

∣

∣

∣

∣

x=X

·Π.

Since we can choose Π = [u v], expression (23) is true. This
proves the EBCA.
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