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Abstract—Full understanding of the architecture of the brain
is a long term goal of neuroscience. To achieve it, advanced image
processing tools are required, that automate the the analysis and
reconstruction of brain structures. Synapses and mitochondria
are two prominent structures with neurological interest for which
various automated image segmentation approaches have been
recently proposed. In this work we present a comparative study
of several image feature descriptors used for the segmentation
of synapses and mitochondria in stacks of electron microscopy
images.

I. I NTRODUCTION

Deciphering the architecture of the brain is a key challenge
of science [6]. In the last years we have seen advances in
the automated acquisition of large series of images of brain
tissue [7], [11]. The analysis of these images enable the
construction of detailed maps of neuron structures from which
we will better understand the basic cognitive functions of the
brain, such as learning, memory and its pathologies [9]. There
are tools to manually analyze and segment the structures in
such images [22]. However, the complexity of these images
and the high number of neurons in a small section of the brain,
makes the automated analysis the only practical solution.

Mitochondria and synapses are two cell structures of neu-
rological interest that are suitable for automated processing.
Synapses are the fundamental mechanism of communication
between neurons. Quantification of synapses, and the identifi-
cation of its types and their distribution is critical to understand
how the brain works [2]. Besides providing energy to the
cell, mitochondria play an important role in many essential
cellular functions including signaling, differentiation, growth
and death. The morphology and distribution of Mitochondria
has great importance in cellular physiology [3] and synaptic
function [14]. Also atypical morphologies or mitochondria
distributions are indicative of abnormal cellular states or the
existence of neurodegenerative diseases [4].

Recent works have proposed algorithms for synapse [12]
and mitochondria segmentation [15], [8] employing various
discriminating features. To extract these features some ap-
proaches use general texture operators [12], where as others
employ specifically designed measurements [15]. In this paper
we will study and compare the features used in these works
for the problem of joint segmentation of synapses and mito-
chondria. In Figure 1 we show a slice of one of the images
used in our study and its associated labels.

(a) Patch (b) Labels

Fig. 1. A patch from the stack (a) and its labels (b), class mitochondria in
gray, class synapses in white.

II. PREVIOUS WORK

A. Synapse segmentation

In [1], an Ada-Boost classifier is used to find context cues
from a set of standard texture descriptors such as image
gradients, Laplacians of Gaussians and eigenvalues of structure
tensors. In [18], texture and shape-based features are extracted
from small image patches around potential objects of interest.
The approach used shows high accuracy and outperforms the
features based on the correlation of pixels in [21] and the gray
levels and connectivity features with automatic techniques
designed to detect synapses in [16].

B. Mitochondria segmentation

In [25], a Gentle-Boost classifier is trained with histograms
of gray scale and Gabor filter responses computed in neigh-
borhood windows around each pixel. In [10], a Random
Forest classifier was trained with the Haar-like descriptors to
detect membranes in individual images of the stack. Graph cut
algorithms were used to regularize the results and satisfy the
3D continuity constraints. In [17], mitochondria of melanoma
cells were segmented with texton-based features obtained by
convolving training images with a filter-bank to generate filter
responses, a variety of classifiers were used among which
are k-NN, SVM and Ada-Boost. Finally [23] introduces the
Ray features and trains an Ada-Boost classifier outperforming
the Haar-like features and Histograms of Oriented Gradients
when applied to detecting irregularly shaped neuron nucleiand
mitochondria.



III. F EATURES

In this section we briefly describe the feature descriptors
considered in this study. We begin describing the simple
general purpose descriptors and proceed in order of increasing
sophistication.

A. Simple Window and Histogram

We construct a simple window based descriptor ordering
and storing a vector of then×n neighborhood of the pixel that
we want to describe. This naive descriptor has proved to be an
excellent source of information for texture segmentation [24].

A histogram based descriptor takes for each pixel ann×n

neighborhood on which a gray level histogram is computed.
In [15], a histogram and theRay features [23] are used as
elements of the feature vector for mitochondria segmentation.
In this paper we tested the histogram and theray features
separately.

A scheme of these two characteristics is shown in Figure 2.

[ ]

][

Stack Image

Histogram

Simple Window

Fig. 2. Simple window and histogram descriptors.

B. Local Binary Patterns

The local binary patterns (LBP) [19], generate a binary code
with k digits taking into account for each pixelp a set ofk
neighbor points at anr distance, wherer is the radius from
the central pixelp to its neighbors. If the value ofp is higher
than a neighborki then we insert a O in the binary code, or 1
if the value is lower. The feature vector is obtained from the
histogram of the LBP binary codes converted to its real values
in a n×n neighborhood. This process is outlined in Figure 3.
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Fig. 3. Depending on the values of the neighboring pixels, the LBP generates
a binary code that can be converted to a real value. In this case the value would
be:0×1+0×2+1×4+1×8+0×16+0×32+0×64+1×128 = 148.
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c = c(I ,m, θ)

Fig. 4. Functionc returns the positionc from the nearest edge or contour
of the imageI to the positionm in direction defined by the angleθ.

C. GRIMS

The GRIMS (Gaussian Rotation Invariant and Multi Scale)
descriptors apply to each image in the stack a set of linear
Gaussian filters at different scales to compute zero, first and
second order derivatives. These linear operators are:
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where Gσ is a Gaussian filter with standard deviationσ
and ∗ is the convolution operator. We will call the result
of applying these operators to the image:s00, s10, s01, s20,
s11 and s02, where the subscript denotes the order of the
derivatives.

The feature vector calculated for each pixel in the image at
scaleσ is
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the gradient magnitude andλ1 y λ2 are the eigenvalues of the
Hessian matrix calculated as follows:
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This procedure is repeated with various scalesσ0, . . . , σn−1,
and since there are 4 features for each scale, we obtain
a feature vector of size4n. In our experiments we use
n = 4 scales, therefore, we obtain a feature vector with 16
dimensions.

D. Ray Descriptors

Ray features [23] are used in [15] for mitochondria segmen-
tation, they are good at extracting shape features in objects
with strong edges, such as mitochondria. The features of the
Ray descriptors depend on the function:

c = c(I ,m, θ), (4)

that computes the positionc from the nearest edge or contour
of the imageI to the positionm in direction defined by the
angleθ. See Figure 4.

The feature vector is:

fRay(I ,m, θ) = [fndist, fnorm, fori], (5)



where

fndist(I) = ‖ c(I ,m, θ)− m ‖ (6)

fnorm(I) = ‖ ∇I(c(I ,m, θ)) ‖ (7)

fori(I) =
∇I(c(I ,m, θ))

‖ ∇I(c(I ,m, θ)) ‖
· (cos θ, sin θ)⊤ (8)

• fndist, is the Euclidean distance to the pointc from the
point m, wherec is the nearest edge.

• fnorm, returns the gradient norm in pointc.
• fori, take into account the orientation of the point in the

nearest edge in directionθ. When a pointm close to the
center of a closed blob is evaluated,fori usually returns
values close to1.

The final step is aligning the features to a canonical orien-
tation to make the feature vector invariant to rotations. This
is solved by sorting the vector starting with the feature that is
aligned with the direction of maximum variance.

E. Difference of Gaussian’s

The difference of Gaussians can be utilized to increase the
visibility of edges in an image and also for blob detection.
This feature subtracts one blurred image from another blurred
with a different scale. A Gaussian kernel suppresses only
high frequency spatial information and by subtracting one
image from the other, it discards all but a handful of spatial
frequencies that are present in the original gray-scale image.
In our approach we used four subtractions of blurred images
at different scales.

F. Laplacian Of Smoothed Image

Due to the elliptical shape of the structures we want to
segment, we tested a blob detector based on the Laplacian of
the Gaussian smoothed image. This is one of the first and also
most common blob detectors which usually results in strong
positive responses for dark blobs and strong negative responses
for bright blobs of similar size. We used different scales for
this approach because the output is strongly dependent on the
relationship between the size of the blob structures in the
image domain and the size of the Gaussian kernel used for
pre-smoothing. Therefore to identify different unknown sizes
of structures we used four scales which we describe later on.

G. Eigenvalues of the structure tensor

The structure tensor is a matrix derived from the gradient
of a function. It represents the predominant directions of the
gradient in a specified neighborhood of a point. It is often used
in image processing due to the properties of its eigenvalues
λ1, λ2 and eigenvectorse1, e2: If λ1 = λ2, the gradient in the
patch has no predominant direction which indicates that the
patch has rotational symmetry and ifλ1 > λ2, then±e1 is
the direction that is maximally aligned with the gradient within
the patch. For a imageI the 2D structure tensor is given by

(

I2x IxIy
IxIy I2y

)

,

wherex andy are the variables in the image andIx andIy are
the partial derivatives ofI with respect tox andy respectively.

H. Histogram of Oriented Gradients

The histogram of oriented gradients descriptors were first
described in [5] for pedestrian detection in static images,they
after were tested for human detection in film and video, as
well as to a variety of common animals and vehicles in static
imagery. The feature vector for the HOG implementation is
obtained by dividing the image into small connected regions,
called cells, and for each cell compiling a histogram of
gradient directions for the pixels within the cell. To buildour
HOG feature vector we used an 18 bins histogram representing
the signed directions of the gradient, a 9 bins histogram
representing the unsigned directions, 4 features representing
the sum of the gradients in each direction and the gray value
of the pixel. This makes a vector with 32 features per cell.

I. Radon-Like features

It has been shown empirically that trying to segment the
structures in connectome images using only geometric or
textural features is not very effective. The Radon-Like fea-
tures were proposed as a remedy to this problem as they
are designed to leverage both the texture and the geometric
information present in the connectome images to segment
structures of interest. As a first step, Radon-Like featuresuse
the edge map of a connectome image as a means to divide it
into regions that are defined by the geometry of the constituent
structures. Next, for each pixel, line segments with their end
points on the closest edges are computed in all directions.
Finally, for each pixel, a scalar value is computed along
each direction using the information in the original image
along these line segments using a so-called extraction function
defined in [13].

IV. EXPERIMENTS

We used an image stack obtained from the somatosensory
cortex of a rat, with a resolution of 3.686µm per pixel. The
thickness of each layer is 20µm. We used 60 images of the
stack for training and 10 for testing. We ran our experiments
on a16GB RAMcomputer with 4 cores at3.2GHz.

For the descriptors that use a Gaussian kernel, we experi-
mentally selected the scalesσ0 = 4, σ1 = 5.65, σ2 = 8, σ3 =
11.31, σ4 = 16 for our tests. In our HOG implementation we
used4×4 pixels per cell and6×6 cells per block. Due to the
block division required, we assigned the computed histogram
to the central pixel in each cell.

For the histogram and simple window descriptors, we tested
with several window and bin sizes. A20 × 20 pixel window
with 10 bins for the histogram and a15×15 box for the simple
window had the best performance.

For the LBP we used aradius of 10 pixels with 25 sample
points from which we obtain the LBP code for each pixel.
With such codification we obtain a new image stack on which
we compute a 10 bins histogram on a20× 20 pixels window,
from which we build our feature vector.

For classification purposes we used two algorithms. A Gaus-
sian and a Random Forest Classifier. The Gaussian classifier is
a generative parametric classifier that assumes Gaussian class



(a) GRIMS RF (b) Simple Window RF (c) Histogram RF (d) Difference of Gaussians
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Fig. 5. Segmentation results. In the first row the best resultswith Random Forest Classifier and in the second row the best results with Gaussian Classifier

conditional distributions. We chose this classifier because of
its simplicity and speed. Random forests operate by training
a multitude of decision trees and selecting the class label that
is the mode of the classes output by individual trees. We used
the scikit-learn [20] implementation of the Random Forest
classifier with 100 decision trees.

The high dimensionality of the feature vectors produced
by the HOG and Radon-Like feature descriptors, given the
number of training samples, produce degenerate Gaussian
distributions with singular covariance matrices. For thisreason
in our experiments we do not use a Gaussian classifier with
HOG and Radon-Like features. Similarly, we do not show
the results of the Random Forest classifier with LBP features,
given its poor performance.

In our experiments we use the ROC curve of each class
against the rest and the Jaccard Index as comparison indices.
We have performed an extensive set of experiments involving
different feature configuration. We compared our work with
the Radon-Like features [13] and the work in [15] but testing
the descriptors of their feature vector individually, i.e., the
histogram and Ray descriptors were tested separately. For
brevity, in Figures 6 and 7 we only show the best segmentation
results for the ROC and Jaccard Index respectively. In these
figuresGC stands forGaussian ClassifierandRF stands for
Random Forest Classifier. In Figure 5 we show sample results
of the best segmentation for some of the features studied.

The results of our experiments show that the Random Forest
classifier achieves the best performance for both mitochondria
and synapse segmentation. However, as shown in Table I, the
time it takes to train and classify is roughly one order of
magnitude larger than the Gaussian classifier. On the other
hand, the Gaussian Classifier is significantly faster than the
Random Forest at expense of a marginal loss in performance.
We can see this performance loss in Figure 6, where, for

TABLE I
LEARNING AND PREDICTION TIMES

Random Forest Classifier
Descriptor Learning Prediction

LBP 27min 36s
Simple Window 126.1min 29.4s

Histogram 12.3min 13.29s
GRIMS 35.2min 15.54s

Ray 53.1min 19s
HOG 54.4min 21s

Laplacian
of Gaussian 18.4min 11.3s

Difference
of Gaussiańs 18.6min 11.9s

Gaussian Classifier
Descriptor Learning Prediction

LBP 1.4s 1.3s
Simple Window 3s 1.2s

Histogram 3s 0.5s
GRIMS 1.2s 1s

Ray 2s 0,4s
Eigenvalues of

Structure Tensor 2.1s 0.2s
Laplacian

of Gaussian 2.3s 1s
Difference

of Gaussiańs 2.3s 1.1s

example, the synapse ROC Curve for the GRIMS descriptors
with Random Forest is the second best curve followed by that
for the with Gaussian Classifier. Similarly, in the mitochondria
plot, the ROC curves of any feature set always achieve worse
performance for the Gaussian classifier than for the Random
Forest.

The GRIMS descriptors provide the best performance for
mitochondria segmentation, closely followed by the simple
window. On the other hand, for the segmentation of synapses,
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Fig. 6. ROC Curves. The top figure shows the class Mitochondria and the bottom figure shows the class Synapse. Dotted lines are the experiments done
with a Gaussian classifier (GC) and continuous lines with a random forest classifier (RF).

the simple window descriptor provides the best performance,
immediately ahead of the GRIMS. The Jaccard index and the
ROC curve provide similar evaluation results.

The random forest classifier provides an importance mea-
sure for each feature, in our experiments the most discrimina-
tive feature is the gray level and we can see that the descriptors
that use the gray level and its variations are the best descriptors
in this work.

Although Ray descriptors [23] were specifically designed to
describe structures with strong edges, such as mitochondria,
they achieve their best performance when used in combination
with gray value histograms [15]. Similarly, LBP’s have been
extensively used for describing textures, one of their features
being their robustness against illumination changes. However,
as our experiments suggest, they do not performed well in EM
images possibly because they have a very strong background
noise.

We would also like to remark the good results achieved

by the simple window descriptor. There are various reasons
that justify this result. First, it is well known that texture
classification using the joint distribution of intensity values
over extremely compact neighborhoods outperforms classifi-
cation using sophisticated filter banks with large support [24].
Second, both mitochondria and synapses are dark regions on
a clear background. Hence, they can be well represented with
such a feature. Finally, this feature works slightly betterfor
synapse than for mitochondria segmentation. The reason for
this is that in our images an average synapse is around 10
pixels thick. So, in most cases it can be fully enclosed within a
15×15 window. On the other hand, mitochondria are structures
much larger. Very seldom they fit entirely within that window.
Hence they are more difficult to represent with a compact
neighborhood. However, they have a well defined texture that
can be described invariantly to rotations with GRIMS.
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Fig. 7. Jaccard index of synapse and mitochondria segmentation. The top
figure shows results with a random forest classifier, the bottom figure shows
results with a Gaussian classifier.

V. CONCLUSIONS

We tested nine feature descriptors with two classifiers in
an EM stack for the joint segmentation of mitochondria and
synapses. Our results show that GRIMS and simple window
descriptors exhibit the best performance.

Although the Random Forest classifier achieves better pre-
cision, we suggest the use of the Gaussian Classifier given the
large size of the typical EM image stacks and the gains in
speed provided by this classifier.

As a future work we would like to consider the segmenta-
tion of other prominent neuronal structures, such as vesicles,
myelin or membranes. We would also like to use feature
selection techniques to study the combination of several image
features.
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