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Abstract—Full understanding of the architecture of the brain
is a long term goal of neuroscience. To achieve it, advanced image
processing tools are required, that automate the the analysis and
reconstruction of brain structures. Synapses and mitochondria
are two prominent structures with neurological interest for which
various automated image segmentation approaches have been
recently proposed. In this work we present a comparative study
of several image feature descriptors used for the segmentation
of synapses and mitochondria in stacks of electron microscopy
images.
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) ) ) o Fig. 1. A patch from the stack (a) and its labels (b), class chibmdria in
Deciphering the architecture of the brain is a key challengey, class synapses in white.

of science [6]. In the last years we have seen advances in

the automated acquisition of large series of images of brain

tissue [7], [11]. The analysis of these images enable the Il. PREVIOUSWORK

construction of detailed maps of neuron structures fronchvhi )

we will better understand the basic cognitive functionshef t A- Synapse segmentation

brain, such as learning, memory and its pathologies [9]r@he | [1], an Ada-Boost classifier is used to find context cues

are tools to manually analyze and segment the structuresqifin 5 set of standard texture descriptors such as image

such images [22]. However, the complexity of these imagggadients, Laplacians of Gaussians and eigenvalues atisteu

and the high number of neurons in a small section of the brajgnsors. In [18], texture and shape-based features amceedr

makes the automated analysis the only practical solution. from small image patches around potential objects of istere
Mitochondria and synapses are two cell structures of néfihe approach used shows high accuracy and outperforms the

rological interest that are suitable for automated prangss features based on the correlation of pixels in [21] and tlag gr

Synapses are the fundamental mechanism of communicatigffels and connectivity features with automatic technique
between neurons. Quantification of synapses, and the fdeniesigned to detect synapses in [16].

cation of its types and their distribution is critical to wnstand
how the brain works [2]. Besides providing energy to th
cell, mitochondria play an important role in many essential
cellular functions including signaling, differentiatiogrowth In [25], a Gentle-Boost classifier is trained with histoggam
and death. The morphology and distribution of Mitochondriaf gray scale and Gabor filter responses computed in neigh-
has great importance in cellular physiology [3] and syrmaptborhood windows around each pixel. In [10], a Random
function [14]. Also atypical morphologies or mitochondrigForest classifier was trained with the Haar-like descriptor
distributions are indicative of abnormal cellular statesh®e detect membranes in individual images of the stack. Graph cu
existence of neurodegenerative diseases [4]. algorithms were used to regularize the results and satigfy t
Recent works have proposed algorithms for synapse [12P continuity constraints. In [17], mitochondria of melana
and mitochondria segmentation [15], [8] employing variousells were segmented with texton-based features obtaiped b
discriminating features. To extract these features some a@pnvolving training images with a filter-bank to generateefil
proaches use general texture operators [12], where assothresponses, a variety of classifiers were used among which
employ specifically designed measurements [15]. In thigpammre k-NN, SVM and Ada-Boost. Finally [23] introduces the
we will study and compare the features used in these woirRay features and trains an Ada-Boost classifier outperfaymi
for the problem of joint segmentation of synapses and mitthe Haar-like features and Histograms of Oriented Gradient
chondria. In Figure 1 we show a slice of one of the imageghen applied to detecting irregularly shaped neuron naaidi
used in our study and its associated labels. mitochondria.

Mitochondria segmentation



Ill. FEATURES

In this section we briefly describe the feature descriptors ¢ =c(l,m,0)
considered in this study. We begin describing the simple
general purpose descriptors and proceed in order of iriageas
sophistication. m 0

A. Simple Window and Histogram
. . . . Fig. 4. Functionc returns the positiore from the nearest edge or contour
We construct a simple window based descriptor orderirgthe imagel to the positionm in direction defined by the angle

and storing a vector of thex n neighborhood of the pixel that
we want to describe. This naive descriptor has proved to be an
excellent source of information for texture segmentatiaf][ C. GRIMS

A histogram based descriptor takes for each pixehann The GRIMS (Gaussian Rotation Invariant and Multi Scale)
neighborhood on which a gray level histogram is computedescriptors apply to each image in the stack a set of linear
In [15], a histogram and th&ay features [23] are used asGaussian filters at different scales to compute zero, firdt an
elements of the feature vector for mitochondria segmemtati second order derivatives. These linear operators are:

In this paper we tested the histogram and thg features
separately. 9 9 92
A scheme of these two characteristics is shown in Figure 2. {Ga*a 0-Gox=—,0-Ggx 0% Go*
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|| _ where G, is a Gaussian filter with standard deviatien
| I | II ] and « is the convolution operator. We will call the result

L] L] 1 of applying these operators to the imaggg, si0, So1, 520,
Histogram s11 and sgp2, where the subscript denotes the order of the

derivatives.
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’ ' The feature vector calculated for each pixel in the image at
Simple Window

scales is {soo, \/m,)\l,)\g}, where \/s3, + 53, is
Fig. 2. Simple window and histogram descriptors. the gradient magnitude and y A are the eigenvalues of the
Hessian matrix calculated as follows:

B. Local Binary Patterns

1 2
The local binary patterns (LBP) [19], generate a binary code 1 = 5 <520 + S0z + \/(520 —s02)® + 4511) @
with k digits taking into account for each pixela set ofk 1
neighbor points at am distance, where is the radius from Ay = 5 <820 + 502 — \/(820 —502)% + 48%) (3)

the central pixeb to its neighbors. If the value gf is higher

than a neighbok; then we insert a O in the binary code, or 1 This procedure is repeated with various scalgs .. , 0,1,

if the value is lower. The feature vector is obtained from th@nd since there are 4 features for each scale, we obtain

histogram of the LBP binary codes converted to its real valu@ feature vector of sizeln. In our experiments we use

in an x n neighborhood. This process is outlined in Figure 33 = 4 scales, therefore, we obtain a feature vector with 16
imensions.

D. Ray Descriptors

Ray features [23] are used in [15] for mitochondria segmen-
tation, they are good at extracting shape features in abject
with strong edges, such as mitochondria. The features of the
Ray descriptors depend on the function:

Cc= C(Iamao)a (4)

) _ that computes the positianfrom the nearest edge or contour
Binary Code=[00110001] of the imagel to the positionm in direction defined by the

Fig. 3. Depending on the values of the neighboring pixels fBP generates angIeH. See Figure 4.

a binary code that can be converted to a real value. In thistb@svalue would

ber0x 140x2-+1 x4+ 1x8+0x 16-0x32-0%64+1x 198 — 148, 1he feature vector is:

fRay(I , M, 0) = [fndisb fnorm7 foriL (5)



where H. Histogram of Oriented Gradients

fadist() = [ c(l,m,0) —m || (6) The histogram of oriented gradients descriptors were first
described in [5] for pedestrian detection in static imagesy

from(l) = V||(C(|I»m>90)) I (") after were tested for human detection in film and video, as
foill) = Vi(e(l,m,0)) (cosf,sin@)T (8) well as to a variety of common animals and vehicles in static
[ VI(e(l,m,0)) | imagery. The feature vector for the HOG implementation is
* fndist iS the Euclidean distance to the pomtrom the obtained by dividing the image into small connected regions
point m, wherec is the nearest edge. called cells, and for each cell compiling a histogram of

* fnorm, returns the gradient norm in poiot gradient directions for the pixels within the cell. To buddr

« fori, take into account the orientation of the point in theJOG feature vector we used an 18 bins histogram representing
nearest edge in directich When a pointm close to the the signed directions of the gradient, a 9 bins histogram
center of a closed blob is evaluatefi;; usually returns representing the unsigned directions, 4 features repiiagen
values close td. the sum of the gradients in each direction and the gray value

The final step is aligning the features to a canonical orienf the pixel. This makes a vector with 32 features per cell.

tation to make the feature vector invariant to rotationsisTh
is solved by sorting the vector starting with the featurd tha

aligned with the direction of maximum variance. It has been shown empirically that trying to segment the
. . structures in connectome images using only geometric or
E. Difference of Gaussian's textural features is not very effective. The Radon-Like-fea
The difference of Gaussians can be utilized to increase tfiges were proposed as a remedy to this problem as they
visibility of edges in an image and also for blob detectioryre designed to leverage both the texture and the geometric
This feature subtracts one blurred image from anothermlrrinformation present in the connectome images to segment
with a different scale. A Gaussian kernel suppresses omifuctures of interest. As a first step, Radon-Like featurss
high frequency spatial information and by subtracting onfie edge map of a connectome image as a means to divide it
image from the other, it discards all but a handful of spatighto regions that are defined by the geometry of the constitue
frequencies that are present in the original gray-scal@énastructures. Next, for each pixel, line segments with theil e
In our approach we used four subtractions of blurred imaggsints on the closest edges are computed in all directions.
at different scales. Finally, for each pixel, a scalar value is computed along
F. Laplacian Of Smoothed Image each direction using the information in the original image
- along these line segments using a so-called extractiortifumc
Due to the elliptical shape of the structures we want tgef'ned in [13]
segment, we tested a blob detector based on the Laplacian © '
the Gaussian smoothed image. This is one of the first and also IV. EXPERIMENTS

most common blob detectors which usually results in strong\ne used an image stack obtained from the somatosensory
positive responses for dark blobs and strong negative nsggo cortex of a rat, with a resolution of 3.686: per pixel. The

for bright blobs of similar size. We used different scales fochickness of each layer is 2@. We used 60 images of the
this appro_ach because the outputis strongly dependent_eon dhek for training and 10 for testing. We ran our experiments
relationship between the size of the blob structures in t ® a16GB RAMcomputer with 4 cores & 2GHz

image domain and the size of the Gaussian kemel used 0, 1he gescriptors that use a Gaussian kernel, we experi-
pre-smoothing. Therefore to identify different unknownesi mentally selected the scales — 4,0, — 5.65, 05 — 8, 05 —

of structures we used four scales which we describe later gg.5; o4 = 16 for our tests. In our HOG implementation we

|. Radon-Like features

G. Eigenvalues of the structure tensor used4 x 4 pixels per cell and x 6 cells per block. Due to the

The structure tensor is a matrix derived from the gradieRIoCK division required, we assigned the computed histagra
of a function. It represents the predominant directionshef t ©© the central pixel in each cell. _
gradient in a specified neighborhood of a point. It is ofteacus ~_FOr the histogram and simple window descriptors, we tested

in image processing due to the properties of its eigenvalu¥ih several window and bin sizes. 20 x 20 pixel window
A1, A2 and eigenvectors; , ex: If A\; = \o, the gradient in the with 10 bins for the histogram and1a x 15 box for the simple

patch has no predominant direction which indicates that tHdndow had the best performance. .
patch has rotational symmetry andXf > \o, then +e, is For the LBP we used aadius of 10 pixels with 25 sample

the direction that is maximally aligned with the gradienthin  Points from which we obtain the LBP code for each pixel.
the patch. For a imagkthe 2D structure tensor is given by With such codification we obtain a new image stack on which

2oL we compute a 10 bins histogram or2@x 20 pixels window,
< T Ty ) , from which we build our feature vector.
Ll I For classification purposes we used two algorithms. A Gaus-
wherez andy are the variables in the image ahdand, are sian and a Random Forest Classifier. The Gaussian classifier i
the partial derivatives of with respect tor andy respectively. a generative parametric classifier that assumes Gaussiss cl



(f) GRIMS GC (g) Simple Window GC (h) Histogram GC (i) Difference of Gaussian§) Laplacian of Gaussian
GC GC

Fig. 5. Segmentation results. In the first row the best resuilts Random Forest Classifier and in the second row the besttsewith Gaussian Classifier

conditional distributions. We chose this classifier beeaok LEARNING A,\TDAEIQIEDIICT,ON TIMES
its simplicity and speed. Random forests operate by trginin
a multitude of decision trees and selecting the class ldta! t Random Forest Classifier
is the mode of the classes output by individual trees. We used Descripior_ Learning _ Prediction
. . . LBP 27min 36s
the sgl_klt-le_arn [20] |m_pl_ementat|on of the Random Forest Simple Window ~ 126.1min 29 4s
classifier with 100 decision trees. Histogram  12.3min 13.29s
The high dimensionality of the feature vectors produced GRIMS  35.2min  15.54s
by the HOG and Radon-Like feature descriptors, given the H%"’g g’iim:g :Zli’:
number of training samples, produce degenerate Gaussian Laplacian '
distributions with singular covariance matrices. For tieigson of Gaussian  18.4min 11.3s
in our experiments we do not use a Gaussian classifier with Difference
HOG and Radon-Like features. Similarly, we do not show of Gaussiah _ 18.6min  11.9s
the results of the Random Forest classifier with LBP features Gaussian Classifier _
. - Descriptor Learning  Prediction
given its poor performance. LBP 1 4s 13s
In our experiments we use the ROC curve of each class Simple Window 3s 1.2s
against the rest and the Jaccard Index as comparison indices Histogram 3s 0.5s
We have performed an extensive set of experiments involving GR'F';"S 1225 012'
different feature configuration. We compared our work with Eigenvaluesa)c/)f S s
the Radon-Like features [13] and the work in [15] but testing Structure Tensor 2.1s 0.2s
the descriptors of their feature vector individually, ,i.éhe Laplacian
histogram and Ray descriptors were tested separately. For of Gaussian 2.3s 1s
brevity, in Figures 6 and 7 we only show the best segmentation Difference
of Gaussiag 2.3s 1.1s

results for the ROC and Jaccard Index respectively. In these
figuresGC stands forGaussian Classifieand RF stands for
Random Forest Classifiem Figure 5 we show sample results
of the best segmentation for some of the features studied. example, the synapse ROC Curve for the GRIMS descriptors

The results of our experiments show that the Random For#4th Random Forest is the second best curve followed by that
classifier achieves the best performance for both mitoctimndfor the with Gaussian Classifier. Similarly, in the mitochda
and synapse segmentation. However, as shown in Table I, Bi@l, the ROC curves of any feature set always achieve worse
time it takes to train and classify is roughly one order grerformance for the Gaussian classifier than for the Random
magnitude larger than the Gaussian classifier. On the otf&rest.
hand, the Gaussian Classifier is significantly faster than th The GRIMS descriptors provide the best performance for
Random Forest at expense of a marginal loss in performanggtochondria segmentation, closely followed by the simple
We can see this performance loss in Figure 6, where, faindow. On the other hand, for the segmentation of synapses,
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Fig. 6. ROC Curves. The top figure shows the class Mitochandnd the bottom figure shows the class Synapse. Dotted lireth@ experiments done
with a Gaussian classifier (GC) and continuous lines withralean forest classifier (RF).

the simple window descriptor provides the best performandey the simple window descriptor. There are various reasons
immediately ahead of the GRIMS. The Jaccard index and ttieat justify this result. First, it is well known that textr
ROC curve provide similar evaluation results. classification using the joint distribution of intensity lwes

The random forest classifier provides an importance me@er extremely compact neighborhoods outperforms classifi
sure for each feature, in our experiments the most discamirfation using sophisticated filter banks with large suppe# [
tive feature is the gray level and we can see that the desrsiptSecond, both mitochondria and synapses are dark regions on

that use the gray level and its variations are the best gitsrsi @ clear background. Hence, they can be well represented with
in this work. such a feature. Finally, this feature works slightly beftr

gynapse than for mitochondria segmentation. The reason for

describe structures with strong edges, such as mitochnndﬁ?is is that in our images an average synapse Is arogn_d 10
they achieve their best performance when used in comb'rnatf?)'xels th',Ck' So, in most cases it can 'be fully enclosed Withi
with gray value histograms [15]. Similarly, LBP's have been? > 15 window. On the other hand, mitochondria are structures
extensively used for describing textures, one of theirueat MuCh larger. Very seldom they fit entirely within that window
being their robustness against illumination changes. kewe HeNce they are more difficult to represent with a compact
as our experiments suggest, they do not performed well in Effi9nborhood. However, they have a well defined texture that
images possibly because they have a very strong backgroGAf Pe described invariantly to rotations with GRIMS.

noise.

We would also like to remark the good results achieved

Although Ray descriptors [23] were specifically designed
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Fig. 7. Jaccard index of synapse and mitochondria segmemtdtfee top
figure shows results with a random forest classifier, theobotigure shows
results with a Gaussian classifier.
[13]
V. CONCLUSIONS (14]

We tested nine feature descriptors with two classifiers jims)
an EM stack for the joint segmentation of mitochondria and
synapses. Our results show that GRIMS and simple window
descriptors exhibit the best performance. [16]

Although the Random Forest classifier achieves better pre-
cision, we suggest the use of the Gaussian Classifier given th
large size of the typical EM image stacks and the gains [iv]
speed provided by this classifier.

As a future work we would like to consider the segmentgsg;
tion of other prominent neuronal structures, such as \&sicl
myelin or membranes. We would also like to use featchleg]
selection techniques to study the combination of severafjam
features.
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