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Abstract

Facial expression recognition is a topic of interest

both in industry and academia. Recent approaches to

facial expression recognition are based on mapping ex-

pressions to low dimensional manifolds. In this paper

we revisit various dimensionality reduction algorithms

using a graph-based paradigm. We compare eight di-

mensionality reduction algorithms on a facial expres-

sion recognition task. For this task, experimental re-

sults show that although Linear Discriminant Analysis

(LDA) is the simplest and oldest supervised approach,

its results are comparable to more flexible recent algo-

rithms. LDA, on the other hand, is much simpler to tune,

since it only depends on one parameter.

1. Introduction

One of the open problems of computer science is to

make computers that interact with humans in a natu-

ral way. A key element in natural human computer

interaction is the recognition of human facial expres-

sions. Recently, much effort is being devoted within

the computer vision research community to processing

video sequences and modeling dynamic facial expres-

sions [1, 9, 13]. One way to solve this problem is map-

ping facial expression to low dimensional manifolds

exhibiting separable distributions for different expres-

sions [1, 3, 9]. In this paper we compare the perfor-

mance of eight graph-based dimensionality reduction

algorithms on a facial expression recognition problem.

2. Face alignment and facial expression

recognition

In our approach for facial expressions recognition,

face images are located and tracked at video frame rates

Figure 1. Illumination rectified images.

using an efficient face alignment procedure [5]. The

tracker automatically crops the face and compensates

illumination changes, as shown in Fig. 1, where the first

row shows the original cropped images and the second

row the corresponding illumination rectified ones (61×
72 pixels images).

We aim to recognize Ekman’s six prototypic facial

expressions (joy, surprise, anger, sadness, fear, disgust).

To do so we adopt a model-based approach for facial

expression recognition. By tracking a set of 322 labeled

image sequences of 92 subjects from the Cohn-Kanade

data base [8], we build a user-and-illumination-inde-

pendent global representation of all facial expressions

(see [5] for details). In this model, a face image is rep-

resented with a point in a reduced dimensionality sub-

space (5 dimensions after PCA+LDA dimensionality

reduction in our original formulation [5]). The variabil-

ity of the classes of images associated to the prototypic

facial expressions are represented by the Kohn-Kanade

illumination rectified images projected onto a lower di-

mensional subspace embedded in the 90-dimensional

PCA space of deformations, termed the facial expres-

sion manifold. In this paper we compare the perfor-

mance of eight graph-based dimensionality reduction

algorithms in the construction of the facial expression

manifold.

Finally, images representing similar expressions are

mapped to nearby points on the manifold. We use

the nearest-neighbor probabilistic procedure introduced

in [1], section 5, to combine the information provided



by the incoming image sequence with the information

represented in the expression manifold to estimate the

posterior probability of a facial expression.

3. Graph-based Dimensionality Reduction

3.1. The Basic Idea

On the whole the graph-based dimensionality reduc-

tion algorithms reviewed here are all built on the basis

of a simple relationship (c.f. [4]):

∑

i,j

‖xi − xj‖
2Wi,j = 2tr(X⊤LX), (1)

where xi ∈ R
n, i = 1, . . . , N , X = (x1, . . . ,xN )⊤,

W and L is the weight matrix and Laplacian matrix

of a given graph respectively1. Equation (1) represents

the scatterness of the given feature vectors xi w.r.t. the

given graph. For example, the early Locality Preserving

Projection (LPP) algorithm [6] is unsupervised, which,

via a linear projection PULPP, retains the neighborhood

information obtained from high-dimensional data by

choosing Wi,j = 1 when xi ∈ N (xj) or xj ∈ N (xi)
(N (x) denotes the neighborhood of x) and Wi,j = 0
otherwise. The desired PULPP minimizes

min
P

tr(P⊤X⊤LULPPXP ) s.t. P⊤X⊤DULPPXP = I,

where tr denotes the trace of a matrix. Later, a super-

vised version of LPP [7] is developed. The proposed

graph GSLPP has an edge between each pair of samples

from different classes. Thus the desired projection will

push samples of different classes away from each other

and result in an increased Between Class Scatterness

(BCS), i.e. PSLPP solves the following optimization

max
P

tr(P⊤X⊤LSLPPXP ) s.t. P⊤X⊤DSLPPXP = I.

3.2. PCA and LDA

The well-known Principal Component Analysis

(PCA) and LDA algorithms may also be described in

terms of (1) using a graph-view of the common co-

1A graph G has several associated matrices, weight matrix W

whose elements in ith row and jth column, Wi,j is the weight of

the edge between xi and xj and is zero when there’s no edge be-

tween the two vertices, D for a diagonal matrix diag{d1, . . . , dN}

where di =
PN

j=1
Wi,j , and the Laplacian matrix L = D − W .

For different graphs, different sbscripts or supscripts are used.

variance matrix,

X⊤(I −
1

N
11

⊤)X =
1

N

N
∑

i=1

(xi − x̄)(xi − x̄)⊤

=
N

∑

i,j=1

Wi,j(xi − xj)(xi − xj)
⊤,

where Wi,j = 1

N
. Inspired by this formulation, Local

Fisher Discriminant Criterion (LFDC) [10] rephrases

LDA and adds locality to the classical LDA algorithm

by modifying the original weights,

Sw =
1

2

N
∑

i=1

N
∑

j=1

Bi,jW
w
i,j(xi − xj)(xi − xj)

⊤

Sb =
1

2

N
∑

i=1

N
∑

j=1

Bi,jW
b
i,j(xi − xj)(xi − xj)

⊤

where

Ww
i,j =

{

1

Nyi

yi = yj

0 otherwise
W b

i,j =

{

1

N
− 1

Nyi

yi = yj

1

N
otherwise

are the original weights for the within class and between

class graphs implicitly used in LDA, given that yi and

yj are the class labels. LFDC imposes locality on these

graphs by refraining the edges to only near samples,

i.e. by defining B as a neighborhood matrix, that is,

Bi,j = 1 iff xi ∈ N (xj) and xj ∈ N (xi), other-
wise Bi,j = 0.

3.3. MFA, DNE and LSDA

Marginal Factor Analysis (MFA) [11], Discriminant

Neighborhood Embedding (DNE) [12] and Locality

Sensitive Discriminant Analysis (LSDA) [2] all build

two graphs from neighborhood relationships, one for

With-in Class Compactness (WCC), the other for BCS.

MFA has one graph Gw
MFA whose edges are between

each sample and its k1-nearest neighbors in the same

class, the other Gb
MFA whose edges are between each

sample and its k2-nearest neighbors in all other classes.

It seeks the directions vi, i = 1 . . . , d that maximizes

v
⊤

i X⊤Lb
MFAXvi

v
⊤

i X⊤Lw
MFAXvi

s.t. v
⊤

i X⊤Lw
MFAXvj = δi,j ,

where δi,j is the Kronecker’s delta and j = 1, . . . , i.
DNE, on the other hand, minimizes the difference,

v
⊤

i X⊤(Lw
MFA − Lb

MFA)Xvi s.t. v
⊤

i vj = δi,j ,

where j = 1, . . . , i. In [12], Zhang and et al. paraphrase
their idea with negative weights for the between class
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Figure 2. A Comparison of DNE, MFA and
LSDA

edges. It’s easily seen that their Laplacian matrix for the

graph with negative weights is almost Lw
DNE−Lb

DNE, ex-

cept the edge rules—in [12] there will be edges between

each sample and its k nearest samples, with positive

weight if they are in the same class, otherwise negative

ones. LSDA goes a little further by explicitly introduc-

ing a balancing parameter α ∈ [0, 1], resulting in

max
vi

d
∑

i=1

v
⊤

i X⊤(αLb
MFA − (1 − α)Lw

MFA)Xvi

s.t. v
⊤

i X⊤WwXvj = δi,j

or equivalently

max
vi

d
∑

i=1

v
⊤

i X⊤(αLb
MFA + (1 − α)Ww

MFA)Xvi

s.t. v
⊤

i X⊤WwXvj = δi,j

To have a clearer view of these algorithms, Fig. 2

shows a simple case: the ellipse-like curve shows the

pair of WCC and BCS when a unit vector rotates in

the plane. The MFA seeks for the line that intersects

the ellipse with maximum slope (the blue dashed line).

The DNE seeks for the line with slope 1 that intersects

the ellipse and has largest intercept on y-axis (the red

dash-dot line). Different choices of α for LSDA yield

different lines that is just tangent to the upper half of

the ellipse. If the embedding space is 1-dimensional,

LSDA is best since with enough trial of α cross vali-

dation will ultimately picks a no worse projection than

DNE and MFA. But it’s not true for higher-dimensional

embeddings, since α is constant.

4. Experiments

In this section we compare the dimensionality reduc-

tion algorithms described above for the facial expres-

sion recognition task introduced in section 2. For our

comparison we used the Cohn-Kanade database, that

was also used for building the expression manifold.
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Figure 3. The expressions manifold in the

PCA+LDA subspace (only the first 3 di-
mensions).

To estimate the recognition rate, we employ a leave-

one-subject-out strategy for cross validation, in which

sequences of each subject are tested against the model

trained with all other sequences. Since all sequences

in the database start with a neutral expression, we have

verified that it is better to train the dimensionality reduc-

tion procedure with the last 6 images of each sequence.

Hence during the training for each fold, there are more

than 1500 images.

Cross validation also helps to obtain a model trained

with the best suitable configuration parameters. There

are several parameters that controls the behavior of the

algorithms introduced in Sec. 3. Also the classifier has

three parameters: a smoothing parameter h, a neigh-

borhood size k and η to avoid the veto effect [1]. In

the experiments, we search for best combination of

the discriminant projection model and the classifier.

For the classifier, η is manually set to 0.3, h takes

values in {1/6, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1} and k in

{21, 23, . . . , 59}.

In table 1, we display the results of the experiments

conducted. Unsupervised algorithms such as PCA and

ULPP lead to low recognition rates. In our feature

space, images that are close to each other will not neces-

sarily be of the same expression. On the contrary, they

are more likely to be different expressions of the same

subject. Thus, for building a good discriminating pro-

jection, it is not adequate to preserve a neighborhood

based on pixel-level distance as ULPP does.

Surprisingly, LDA yields a competent recognition

rate compared with other complicated algorithms, al-

though it is the oldest and simplest supervised proce-

dure. As shown in Fig. 3, the expression manifold con-

tains one single cluster for each type of expression. In-

troducing locality into LDA, as LFDC does, slightly

enhances the performance. The LFDC model in ta-

ble 1 is trained with a neighborhood size 150, best in
{30, 40, 50, 80, 100, 150, 200}.



Projection PCA LDA SLPP ULPP LFDC MFA DNE LSDA

Rate 76% 86% 85% 50% 86% 86% 84% 86%

Dimension 50 5 5 15 7 6 11 9

k 43 31 33 15 35 43 27 31

h 1/6 0.2 1/6 0.2 0.3 0.6 1/6 0.2

Table 1. Recognition rate for all eight dimensionality reduction approaches.

MFA is able to give result comparable to those of

LDA when k1 and k2 are sufficiently large. We set

k1 = k2 = 100 to obtain the reported result. Ac-

tually, a slightly worse result is obtained when setting

k1 = k2 = 50 or 150, 200. LSDA is more flexible

than DNE since it is feasible to tune α and balance the

BCS and WCC. The configuration for LSDA in table 1

is k1 = 100, k2 = 100 and α = 0. It’s interesting

to note that the recognition rate actually decreases as α
increases to 1, which means it’s important to minimize

WCC instead of maximizing BCS. The DNE projection

in table 1 is trained with a neighborhood size 13.

These graph-based dimensionality reduction algo-

rithms give us more room for tuning. Even though the

data for facial expression recognition do not conform to

the clustering assumption which might be necessary for

designing them, they do work fine, perhaps even finer

than the traditional algorithms. But on the other hand,

with more choices of parameters, it takes much more

time than LDA to find a proper setting. It is even pos-

sible to get a higher recognition rate given more time to

search for other settings of LSDA. But anyway, now it

might be close to the limit the linear methods could get

to.

5. Conclusion

In this paper have revisited several dimensionality

reduction algorithms and compared their performance

on a facial expression recognition task. Unsupervised

approaches like PCA and ULPP have the lowest recog-

nition rates, since nearby images in our feature space are

more likely to be different expressions of the same sub-

ject. Supervised approaches, on the other hand, achieve

the best performance. LDA represents the best com-

promise between performance and complexity. For this

problem, the WCC measure dominates BCS and conse-

quently LSDA performs better than DNE. LSDA is the

algorithm with the best recognition rate.

Also, these experiments show that, for appearance-

based facial expression recognition tasks, we must build

a large enough neighborhood for each sample, since the

distance information in the feature space actually does

not help in building discriminant projection and thus a

small neighborhood would be misleading.
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nising facial expressions in video sequences. Pattern

Analysis and Applications, 11(1):101–116, 2008.
[2] D. Cai, X. He, K. Zhou, J. Han, and H. Bao. Locality

sensitive discriminant analysis. In Proc. IJCAI, pages

708–713, 2007.
[3] Y. Chang, C. Hu, and M. Turk. Probabilistic expression

analysis on manifolds. In Proc. CVPR, volume 2, pages

520–527, 2004.
[4] F. R. K. Chung. Spectral Graph Theory. American

Mathematical Society, Providence, Rhode Island, 1997.
[5] L. He, J. M. Buenaposada, and L. Baumela. Real-

time facial expression recognition with illumination-

corrected image sequences. In Proc. of International

Conference on Automatic Face and Gesture Recogni-

tion, 2008.
[6] X. He and P. Niyogi. Locality preserving projections.

Technical Report TR-2002-09, Department of Computer

Science, University of Chicago, Oct 2002.
[7] X. He, S. Yan, Y. Hu, P. Niyogi, , and H.-J. Zhang. Face

recognition using laplacianfaces. IEEE Trans. on PAMI,

27(3), 2005.
[8] T. Kanade, J. Cohn, and Y.-l. Tian. Comprehensive

database for facial expression analysis. In Proc. FG,

pages 46–53, 2000.
[9] C. Shan, S. Gong, and P. W. McOwan. Dynamic facial

expression recognition using a bayesian temporal mani-

fold model. In Proc. BMVC, volume 1, pages 297–306,

2006.
[10] M. Sugiyama. Local fisher discriminant analysis for su-

pervised dimensionality reduction. In W. W. Cohen and

A. Moore, editors, ICML, pages 905–912. ACM, 2006.
[11] S. Yan, D. Xu, B. Zhang, and H. Zhang. Graph em-

bedding: A general framework for dimensionality re-

duction. In Proc of CVPR, pages 830–837, 2005.
[12] W. Zhang, X. Xue, Z. Sun, Y. Guo, and H. Lu. Opti-

mal dimensionality of metric space for classification. In

Proc. of ICML, pages 1135–1142, 2007.
[13] G. Zhao and M. Piettikäinen. Dynamic texture recog-
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