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Abstract

We consider the motion estimation problem in the case of
very closely spaced views. We revisit the differential epipo-
lar equation providing an interpretation of it. On the ba-
sis of this interpretation we introduce a cost function to
estimate the parameters of the differential epipolar equa-
tion, which enables us to compute the camera extrinsics and
some intrinsics. In the synthetic tests performed we com-
pare this continuous method with traditional discrete mo-
tion estimation and contrary to previous findings [6] cannot
perceive any computational advantage for the continuous
method.

1. Introduction

Consider a camera with unknown (and possibly varying)
intrinsic parameters moving in a static scene. At any time
instant, the projection of the scene onto the image plane
generates anoptical flow field. Each flow vector of this field
has a position componentm = [u, v, 1]⊤ and a velocity
componentṁ = [u̇, v̇, 0]⊤, whereu and v are the coor-
dinates of the projection of a world point onto the image
plane, and(u̇, v̇) is the instantaneous velocity vector.

Thedifferential epipolar equation[2, 5]

m⊤Vṁ + m⊤Cm = 0 (1)

with C symmetric andV anti-symmetric, is the first order
relation between the optical flow field and the camera mo-
tion and intrinsic parameters.

In this paper we estimate the camera motion parame-
ters using the differential epipolar equation by minimising
a meaningful geometric error function. We then compare
this to the motion estimates obtained from the more com-
mon discrete epipolar equation. Sadly – and contrary to the
findings reported in [6] – we find no clear evidence that any
performance benefits result.

We begin by reviewing the differential epipolar equation
in §2, discuss our implementation of the motion estimation
problem in§3, and in§4 show experimental results, com-

paring these to the current state-of-the-art in discrete motion
estimation. We draw conclusions in§5.

2. The differential epipolar equation

In our present work, we are considering the case of very
closely spaced views. As indicated in the previous section,
the geometry of this case is governed by thedifferential
epipolar constraint(1) relating image points and their in-
stantaneous image velocities, which was introduced in [5].
In [1], this was extended to a general set of differential con-
straints (relating image points and their instantaneous ve-
locities, accelerations, etc) analogous to the multiview con-
staints described in [7, 4].

The two view constraint in that work comes from a
first order taylor expansion of the projection equation
λ(t)m(t) = P(t)X = [Q(t) | T (t)]X, viz:

(λ + λ̇t + O(t2))(m + ṁt + O(t2))

= ([Q | T ] + [Q̇ | Ṫ ]t + O(t2))X (2)

If we choose a coordinate frame (as we are free to do) which
aligns the world frame with the camera, and rewrite the
equation in matrix form we obtain:

[
I 0 m 0

Q̇ Ṫ m ṁ

]




−X

λ

λ̇



 = 0 (3)

The 6x6 matrix on the left has a non-zero null space, hence
its determinant is zero. Laplacian determinant expansion
then yields the equation

miṁkǫijk ṫj − mimlǫijk ṫj q̇k
l = 0 (4)

which is exactly (1) but restated in tensor notation withṪ

andQ̇ represented respectively asṫj andq̇k
l .

Although this derivation is very clean and direct, it hides
some interesting structure which we would like to explore
further, and so we provide a derivation which is more in the
spirit of [5, 6] as follows.



The world pointX projects to the two image points as

z1m1 = K1 [ I |0 ]X (5)

z2m2 = K2 [R |t ]X (6)

where the rotation matrixR and the translation vectort =
(tx, ty, tz)

⊤ represent camera motion,K1,K2 camera in-
trinsics andz1, z2 relative depths caused by motion.

Combining (5) and (6) we get

z2K
−1
2 m2 = z1RK−1

1 m1 + t. (7)

from which the derivation of the familiar uncalibrated
epipolar equation is relatively straighforward.

Our goal here is to study this relation in the continuous
case. That is, we will assume thatt2 = t1 + dt and com-
pute the limit of (7) whendt → 0. We will consider small
variations of:

• IntrinsicsK−1
2 = K−1

1 + K̇−1dt + o(dt2).
• Image plane motion:m2 = m1 + ṁ dt + o(dt2).
• Camera rotation:R = I + Ω dt + o(dt2).
• Camera translation:t = v dt + o(dt2).
• Depth:z2 = z1 + ż dt + o(dt2).

Introducing the previous equations into (7) and taking
the limit whendt → 0 we obtain the explicit formula foṙm
when the camera is translating and rotating simultaneously

ṁ = [−K1K̇
−1 + K1ΩK−1

1
︸ ︷︷ ︸

Ḣ∞

]m1 −
ż

z1
︸︷︷︸

1/τ

m1 +
1

z1
K1v
︸︷︷︸

e3e

(8)
where e3e is the focus of expansion (or instantaneous
epipole) of the image,τ is the time to contactz1 andḢ∞

is the derivative of the homography for the plane at infinity.
Rewriting (8) we get

ṁ =
(

Ḣ∞ − s⊤Ḣ∞m1I
)

m1

︸ ︷︷ ︸

ṁΩ

+
e3

z1
(e − m1)

︸ ︷︷ ︸

ṁv

(9)

wheres⊤ = (0, 0, 1), ṁv is the component of optical flow
caused by camera translation andṁΩ is the component
caused by camera rotation and intrinsics variation. Here
we can observe that the instantaneous motion of an image
point (optical flow) caused by camera rotation and transla-
tion with varying intrinsics is the composition of two flows:
a rotation/intrinsic flow,ṁΩ, whose value can be com-
puted, provided the derivative of the infinite homography
is known, and a translational flow,̇mv, whose value can
only be computed up to a scale factor, because it depends
on (e3), the translational component along the optical axis.

Taking the dot product of (8) withm⊤
1 [K1v]× we get

the differential epipolar equation

m⊤

1 [K1v]×
︸ ︷︷ ︸

V=[e]×

ṁ+

m⊤

1 [K1v]×[−K1K̇
−1 + K1ΩK−1

1
︸ ︷︷ ︸

C=[e]×Ḣ∞

]m1 = 0.(10)

From (10) it follows thatV is an antisymmetric ma-
trix encoding the projective coordinates of the instantaneous
epipole (FOE), the estimatedC is the symmetric part of
[e]×Ḣ∞, and consequently that the constrainte⊤Ce = 0
must hold.

We will use equation (10) to self calibrate a moving cam-
era with varying focal length. This problem was previously
addressed in [8] for a moving camera with fixed and un-
known intrinsics using normal flow measurements.

3. Estimation of the differential epipolar equa-
tion parameters

In this section we will present a procedure to estimate
the parameters of the epipolar equation. It is based on the
assumption that our optical flow estimation algorithm pro-
vides exact values form and approximated (or noisy) values
for ṁ.

First we will introduce a cost function that measures the
extent to which optical flow data satisfy (1) for a given set
of parametersC, V. Then, we’ll introduce the constraint on
the estimated parameters and resort to an iterative minimi-
sation procedure to compute the optimal values forC and
V.

Let c1, c2, c3, c4, c5, c6 be the components of Sym(C)
ande⊤ = (e1, e2, e3). Substituting these values forV and
C into (1) and factoring the noisy termsu̇, v̇, we get

u̇(e3v − e2
︸ ︷︷ ︸

p

) + v̇(e1 − e3u
︸ ︷︷ ︸

q

)+ (11)

c1u
2 + 2c2uv + 2c3u + c4v

2 + 2c5v + c6
︸ ︷︷ ︸

r

= 0.

The lineΛi(u̇i, v̇i) ≡ p u̇i + q v̇i + r = 0 represents the
instantaneous epipolar linefor the point(ui, vi). From (9)
it is easy to see that it is parallel to the line joiningm ande

(me), its position depending on the value ofḢ∞. When the
motion is only translational and intrinsics are fixed (Ḣ∞ =
0) it coincides withme (see Fig 1).

Note that normal components of optical flow do not give
us any direct constraints on the epipolar geometry. Hence,
in the absence of other constraints (such as scene planarity),
we are limited to using those flow vectors obtained from
regions with low autocorrelation in all spatial directions–
i.e. at ‘corners’.
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Figure 1. Interpretation of Λi.

Our goal is to find the parameters ofV andC that min-
imised(ṁi,Λi), the geometric distance oḟmi to its instan-
taneous epipolar lineΛi. The cost function used,J , is the
sum of the squared distances of each point:

J(O, θ) =

N∑

i=1

d2(ṁi,Λi) =

N∑

i=1

(piu̇i + qiv̇i + ri)
2

p2
i + q2

i

,

whereO = m1, ṁ1, . . . ,mN , ṁN is the optical flow data
andθ = (e1, e2, e3, c1, c2, c3, c4, c5, c6)

⊤ is the parameter
vector.

The uncertainty of each velocity measurement(u̇, v̇) can
be described by a2 × 2 covariance matrix,Σṁ. We then
adopt the following cost function, which takes into account
this information

J(O, θ) =

N∑

i=1

θ⊤fif
⊤

i θ

e⊤HiΣṁi
H⊤

i e
, (12)

where

fi = (v̇i,−u̇i, v̇iui − u̇ivi, u
2
i , 2uivi, 2ui, v

2
i , 2vi, 1)⊤

(13)
and

H⊤

i =

(
1 0 −vi

0 −1 ui

)

.

We then require the minimum ofJ subject to the con-
straint e⊤Ce = 0. In our solution we substitute one of
theθ parameters in (12) for the explicit value obtained from
the constraint and employ a general (unconstrained) itera-
tive minimisation procedure. For example,

c6 = −
c1e

2
1 + 2c2e1e2 + c4e

2
2

e2
3

−
2c3e1 + 2c5e2

e3
. (14)

By substitutingc6 in (12) by (14) we get a new cost function
Jc that implictly imposes the algebraic constraint

Jc(O, δ) =

N∑

i=1

δ⊤gig
⊤

i δ

e⊤HiΣṁi
H⊤

i e
, (15)

whereδ = (e1, e2, e3, c1, c2, c3, c4, c5)
⊤ and

g⊤

i =

[

v̇i, u̇i, u̇ivi − v̇iui, u
2
i −

e2
1

e2
3

, 2(uivi −
e1e2

e2
3

),

2(ui −
e1

e3
), v2

i −
e2
2

e2
3

, 2(vi −
e2

e3
)

]

.

Once the epipolar equation’s parameters are estimated,
computing the FOE is straightforward from (10). The ro-
tational velocity of the camera,Ω, and the focal length can
also be computed given partial knowledge of the camera
calibration parameters [2].

4. Experimental results

The experimental results reported here are synthetic tests
performed with data obtained from a simulated camera with
realistic parameters. In each of the tests performed a cloud
of 400 points is randomly generated in a cube of 5 meters
of depth located at a distance of 2.5 meters and centered
in front of the camera. Each point is projected onto the
image plane and associated to each point we compute an
instantaneous flow vector, which is the projection onto the
image of the instantaneous velocity of the point relative to
the camera. Horizontal and vertical components of the flow
vector are contaminated with randomly distributed gaussian
noise. Each of the following test is repeated 20 times and
the data reported are the average of the computed results.

Our main goal in this paper is to compare the precision
in the estimation of the FOE of the continuous model pre-
sented here with traditional discrete methods. Here the fun-
damental matrix is determined using non-linear estimation
which enforces the rank-2 constraint, and the epipole as the
right null space ofF. In the first test (see Fig.2) we keep
the camera parameters fixed and increase the contaminating
noise. In the second test (see Fig.3) noise remains fixed with
varying rotational and translational disparity. In both plots
continuous model results are represented with solid line and
the discrete ones with dashed line.

Contrary to the experimental results reported in [6], we
do not perceive in the synthetic tests a clear advantage of
one method over the other.

5. Conclusions

We have derived the continuous analogue of the discrete
epipolar equation, given a geometric interpretation of it,and
a practical algorithm for computing a camera’s motion pa-
rameters from closely spaced views.

The results, when compared with the current state-of-
the-art in discrete epipolar geometry, fare no better, and in
some cases worse, than the discrete version. Triggs [3] has
reported (although not demonstrated) a similar conclusion.

The theoretical studies in [5, 2, 1, 3] are of some value
in furthering our understanding of geometric constraints.
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Figure 2. FOE estimation noise varying.
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Figure 3. FOE estimation disparity varying.

Triggs forwards two potential practical advantages of the
differential approach: (i) the correspondence problem is
easier; (ii) the problem may be less non-linear. Unfortu-
nately, as our results show, the former would not seem to be
an advantage given that discrete approaches appear to per-
form as well as continuous, even for closely spaced views,
and – at any rate in our formulation – the latter is not be-
cause of the need to impose the algebraic constraint.

It may be possible to improve the results somewhat
by considering long sequences, however in these circum-
stances one would expect discrete methods to improve fur-
ther since usually a longer sequence will correspond to a
larger viewing baseline. Although our results are not totally
conclusive, they do seem to suggest that there is doubt as
to whether or not further practical investigation will yield
practical advantages of the continuous method.

A second possibility is to investigate the continuous ana-
logue of the tri-focal tensor. [1] did this in implicit form

and we have performed a determinant expansion of their
constraint to obtain four tensors which encode the relative
geometry of points and their image velocities and accelera-
tions. Two practical problems arise on further investigation.
The first is the unweildy number of constraints which exist
between the tensor elements (and how best to enforce them),
and the second is the perrenial one of how best to obtain ac-
curate derivatives (especially higher order ones) from noisy
image data.
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