
PROC. ICIP 2002. VOL I, PP. 565-568, IEEE. ROCHESTER, USA, SEPTEMBER 2002.

SPEEDING UP SSD PLANAR TRACKING BY PIXEL SELECTION

José Miguel Buenaposada, Luis Baumela

Departamento de Inteligencia Arti£cial, Universidad Polit écnica de Madrid
Campus de Montegancedo s/n, 28660 Boadilla del Monte (Madrid). SPAIN

jmbuena@dia.fi.upm.es, lbaumela@fi.upm.es

ABSTRACT

In this paper we present a method to estimate in real-time
the position and orientation of a previously viewed planar
patch. The algorithm is based on minimising the sum of
squared differences between a selected set of pixels obtained
from a previously stored image of the patch and the current
image of it. First a linear model for projectively tracking a
planar patch is introduced, then, a procedure to accelerate
the tracking process is presented. This procedure is based
on using a small set of informative points in the tracking
process. In the experiments conducted we show the gain in
performance and compare different procedures to select the
set of points used in tracking.

1. INTRODUCTION

Tracking planar patches is a subject of interest in computer
vision, with applications in augmented reality [1], mobile
robot navigation [2], face tracking [3], or the generation
of super-resolution images [4]. Traditional approaches to
tracking are based on £nding correspondences in succes-
sive images. This can be achieved by computing optical
¤ow [5] or by matching a sparse collection of features [6].
In ¤ow-based methods, a velocity vector is computed for
each pixel, while in feature-based methods, image features,
such as points and lines are matched across all frames in the
sequence. Feature-based methods minimise an error mea-
sure based on geometrical constraints between a few corre-
sponding features, while direct methods minimise an error
measure based on direct image information collected from
all pixels in the image, such as image brightness.

The tracking method presented in this paper belongs to
the £rst group of methods. It is based on minimising the
sum-of-squared differences (SSD) between a selected set
of pixels obtained from a previously stored image of the
tracked patch (image template) and the current image of it.

This work was funded by the Spanish Ministry of Science and Tech-
nology under grant number TIC1999-1021.

It extends Hager’s SSD tracker [7] by introducing a projec-
tive motion model and a procedure to select the set of pixels
used in tracking.

2. SSD PLANAR TRACKING

Let P be the image of a planar object. Assuming no changes
in the scene illumination, the following constancy equation
holds:

I(x̄, t0) = I(f(x̄, µ̄), tn)∀x̄ ∈ P, (1)

where I(x̄, t0) is the template image ofP and I(f(x̄, µ̄), tn)
is the recti£ed image at time tn, with motion model f(x̄, µ̄)
and motion parameters µ̄.

The motion parameter vector µ̄ can be estimated from
equation (1) by minimising the difference between the tem-
plate and the recti£ed image:

min
µ̄
||I(f(x̄, µ̄), tn)− I(x̄, t0)||

2, (2)

where I(x̄, t) is a column vector constructed scanning P .
This minimisation problem can be solved linearly by

computing µ̄ incrementally while tracking. We can achieve
this by making a Taylor series expansion of (2) about (µ̄,
tn) and computing the increment, δµ, between two time in-
stants [7]:

δµ̄ = −(M>M)−1M>[I(x̄, µ̄n)− I(x̄, µ̄0)]

where M is the Jacobian matrix of the image and depen-
dence of I on t has been dropped for convenience.

While tracking, matrix M must be recalculated in each
frame, as it depends on µ̄. This is computationally expen-
sive, as M is of dimension N×n, being N is the number of
template pixels and n the number of motion parameters. In
the sequel we will factor M in order to simplify this com-
putation.

M can be written as

M(µ̄) =











∇xI(x̄1, µ̄0)
>fx(x̄1, µ̄)

−1fµ(x̄1, µ̄)
∇xI(x̄2, µ̄0)

>fx(x̄2, µ̄)
−1fµ(x̄2, µ̄)

...
∇xI(x̄N , µ̄0)

>fx(x̄N , µ̄)
−1fµ(x̄N , µ̄)











,

(3)
where ∇xI is the template image gradient, fx is the deriva-
tive of the motion model with respect to the pixel coordi-
nates and fµ is the derivative of the motion model with re-
spect to the motion parameters.

Depending on the motion model, M may be factored
into the product of two matrices [7],

M(µ̄)=











∇xI(x̄1, µ̄0)
>Γ(x̄1)

∇xI(x̄2, µ̄0)
>Γ(x̄2)

...
∇xI(x̄N , µ̄0)

>Γ(x̄N)











Σ(µ̄)=M0Σ(µ̄) (4)

a constant matrix M0 of dimension N×k and a matrix Σ of
dimension k×n, that depends on µ̄. As M0 can be precom-
puted, this factorisation reduces the on line computation to

δµ̄ = −(Σ>M>
0 M0Σ)

−1Σ>M>
0 [I(x̄, µ̄n)− I(x̄, µ̄0)].

(5)
Matrix M0 is the Jacobian of the template image. It

is our a priori knowledge about target structure, that is,
how the grey level value of each pixel changes as the ob-
ject moves. It represents the information provided by each
template pixel to the tracking process. Note that we can
not track any object, as in order to solve (4), a non singular
M>

0 M0 matrix is needed.

3. PROJECTIVE MODEL FOR PLANAR
TRACKING

In this section we are going to introduce a projective model
of target motion. In order to do this, we need to obtain the
Jacobian matrix decomposition that arises from this model.

Let x̄ = (u, v)> and x̄h = (r, s, t)> be respectively
the Cartesian and Projective coordinates of an image pixel.
They are related by:

x̄h=





r
s
t



→ x̄=

(

r/t
s/t

)

=

(

u
v

)

; t 6= 0.

The equation f that describes the motion of a planar re-
gion is then a 2D projective linear transformation,

f(x̄h, µ̄)=Hx̄h=





a d g
b e h
c f 1









r
s
t



 ,

where the motion parameters are µ̄ = (a, b, c, d, e, f, g, h)>.

The Jacobian matrix decomposition of this motion model
can be expresses in terms of the elements of equation (3):

∇xh
I(x̄h, µ̄0)

> =

(

∂I

∂u
,
∂I

∂v
,−

(

u
∂I

∂u
+ v

∂I

∂v

))

(6)

fx(x̄h, µ̄)
−1 = H−1 (7)

fµ(x̄h, µ̄) =





r 0 0 s 0 0 t 0
0 r 0 0 s 0 0 t
0 0 r 0 0 s 0 0



 (8)

Introducing (6), (7) and (8) into (3) M can be factored
according to (4):

fx(x̄, µ̄)
−1fµ(x̄, µ̄) =

H−1



 rI3×3 | sI3×3 |
tI2×2

01×2



 =

(

rH−1 | sH−1 | tH−112

)

= Γ(x̄h)Σ(µ̄),

whereH−112 is the matrix composed with the £rst two columns
of H−1, Iq×q is the q × q identity matrix and

Γ(x̄h) =
(

rI3×3 | sI3×3 | tI3×3
)

,

Σ(µ̄) =





H−1 0 0
0 H−1 0
0 0 H−112



 .

With this factorisation we can projectively track a planar
patch with the computational cost of inverting a 8×8 matrix
on each frame.

4. TEMPLATE PIXEL SELECTION

Only areas of high image contrast provide information about
template motion (see Fig. 1, only the white pixels on the left
image provide information for tracking). If in equation (5)
we use all template pixels, most of the computational effort
would be devoted non informative pixels.

Fig. 1. Images of a template (left) and of I(x̄, µ̄n)−I(x̄, µ̄0)
(right), where parameter µ̄ represents a horizontal displace-
ment.

In this section we will further improve the tracking pro-
cedure presented in the previous section by reducing the
number of template pixels used for solving equation (5).

This improvement comes not only from having a smaller
matrix M0, but mainly from diminishing the number of pix-
els warped to compute I(x̄, µ̄n).

The Jacobian matrix M of image I can be expressed as:

M = (Iµ1
, Iµ2

, · · · , Iµn
),

where Iµi
= ∂I(x̄,µ̄)

∂µi

is a column vector with an entry for ev-
ery pixel in I . It represents the changes in image brightness
induced by motion µi (see Fig. 2). Thus, M relates varia-
tions in motion parameters to variations in brightness val-
ues. Note that equation (5) works in the opposite direction,
i.e. it uses M to compute motion from observed changes in
brightness values.

Fig. 2. Jacobian matrix for a translation (x, y), rotation (θ)
and scale (s) motion model. In reading direction each image
represents respectively Ix, Iy , Iθ, Is.

Let us call I>µ̄ (x̄) the row in M corresponding to image
pixel I(x̄). Each row entry is the derivative of image pixel
I(x̄) with respect to a model parameter µi (∀i = 1 . . . n).
Intuitively, a pixel with a small ||Iµ̄(x̄)|| provides almost no
information for solving (5). So, a good pixel for tracking
is one with a large ||Iµ̄(x̄)||. Given two image pixels I(x̄1)
and I(x̄2), one of them is redundant if Iµ̄(x̄1) ≈ Iµ̄(x̄2).
So, a good set of pixels for tracking is one such that M>M
is not singular.

Selecting the “best” set of m pixels is a combinatorial
search problem, as all

(

m
N

)

sets of pixels should be con-
sidered in order to select the most informative one. In the
context of image registration, Dellaert selects m pixels ran-
domly from the top 20% of pixels with highest ||Iµ̄(x̄)|| [8].
In our experiments we have found that the best set of pix-
els for tracking is the one with highest ||Iµ̄(x̄)||, lowest re-
dundancy and most even distribution on the image. In the
sequel we will present a procedure to select a set of pixels
with high ||Iµ̄(x̄)|| and low redundancy.

If we consider each row vector Iµ̄(x̄) as a point in n-
dimensional space, then the points in the convex hull of
this cloud are those with highest ||Iµ̄(x̄)|| and lowest re-
dundancy. Let us call this set of points the Jacobian cloud.

Computing the convex hull of a Jacobian cloud with thou-
sands of points in a 8-dimensional space (the projective mo-
tion model has 8 parameters) can be time consuming. On
the other hand, as can be seen in Fig. 3 (right), the distribu-
tion of points for this model is highly correlated, with two
space directions representing 99.96% of the total variance
in the cloud. So, a good approximation to the convex hull
of the cloud would be to compute the convex hull of its pro-
jection onto the two main directions (see Fig. 3, left).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

9

Eigenvalue index (ordered)

E
ig

en
va

lu
e

−3 −2 −1 0 1 2 3

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Eigenvector 1

E
ig

en
ve

ct
or

 2

Fig. 3. Eigenvalues of the Jacobian cloud’s covariance ma-
trix (left) and view of the projection of the Jacobian cloud
onto the two principal directions (right).

If we choose the points from the outer convex hulls (like
peeling off an orange) then only the pixels in the strongest
edges of the image would be selected. In order to achieve
a more even spatial distribution of the selected pixels we
choose all pixels of a randomly selected set of convex hulls
from the outer 30% of them (see Fig. 4).

−3 −2 −1 0 1 2 3

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Eigenvector 1

E
ig

en
ve

ct
or

 2

Fig. 4. Points in the outer 30% convex hulls in projected
space.

5. EXPERIMENTS

We have conducted our experiments on a GNU/Linux sys-
tem with an AMD K7 750MHz. We acquire images from
a Sony VL500 digital camera with IEEE 1394 interface. In
the experiments performed we track a template of 149×104
pixels, shown on the left in Fig. 1.

In the £rst experiment we study the gain in throughput
achieved by tracking the template using only 695 pixels, in-
stead of the 15.496 pixels of the full template. As can be

seen in Fig. 5, using pixel selection the system runs one or-
der of magnitude faster.

50 100 150 200 250
0

100

200

300

400

500

M
ill

is
ec

on
ds

 p
er

 fr
am

e

Frame number

695 pixels selected
Whole template

Fig. 5. Gain in system throughput achieved by using pixel
selection.

Next we compare the performance of the pixel selection
procedure presented in section 4 with Dellaert’s method and
with full frame tracking. In Fig. 6 are shown the plots of
the RMS tracking residual for full frame tracking and for
a tracker using 695 pixels selected with the two methods
discussed in this paper.

0 50 100 150 200 250
30

40

50

60

70

80

90

100

Frame number

R
es

id
ua

l

Dellaert
Convex hulls
Whole template

Fig. 6. Tracking residual for different pixel selection proce-
dures.

In the last experiment (see Fig. 7) we study the evolu-
tion of the average frame tracking residual as the number of
pixels used in tracking increases.

0 0.5 1 1.5 2

x 10
4

0

5

10

15

20

25

30

A
ve

ra
ge

 fr
am

e
re

si
du

al

Number of pixels choosen

Dellaert
Convex Hulls

Fig. 7. Evolution of the average tracking residual for differ-
ent numbers of selected pixels and different selection pro-
cedures.

These results show that by adequately selecting the pix-
els used in tracking, the amount of computation per frame

can be reduced in one order of magnitude. The penalty that
we pay for this improvement in processing time is an in-
crease of about 20% in the tracking residual.

6. CONCLUSIONS

We have introduced a linear model for projectively track-
ing a planar patch and a procedure to speed up tracking by
selecting only a special set of pixels from the tracked tem-
plate. The pixel selection procedure introduced increases in
one order of magnitude the speed at which frames are pro-
cessed.

Being able to track a planar patch using a small set of
pixels is important not only because of the increase in pro-
cessing speed, but also because in this way we will be able
to track regions of arbitrary shape.

In the present implementation we work at 18 frames per
second for the full template tracker using Intel’s IPL warp-
ing routines. The results shown in the experimental section
were obtained using a software not optimised. We are in the
process of writing MMX-optimised routines for warping a
selected set of pixels.

The spatial distribution of selected pixels on the image
is an interesting line of research. We think that the perfor-
mance of the tracker can be improved by evenly distributing
the selected pixels in the image. This issue is specially im-
portant in we want to consider tracking with partial template
occlusions.

7. REFERENCES

[1] G. Simon, A. Fitzgibbon, and A. Zisserman, “Marker-
less tracking using planar structures in the scene,” in
Proc. International Symposium on Augmented Reality,
October 2000.

[2] F. Lerasle V. Ayala, J.B. Hayet and M. Devy, “Visual
localization of a mobile robot in indoor environments
using planar landmarks,” in Proceedings Intelligent
Robots and Systems, 2000. IEEE, 2000, pp. 275–280.

[3] M. J. Black and Y. Yacoob, “Recognizing facial ex-
pressions in image sequences using local parameterized
models of image motion,” Int. Journal of Computer Vi-
sion, vol. 25, no. 1, pp. 23–48, 1997.

[4] C. Thorpe F. Dellaert and S. Thrun, “Super-resolved
texture tracking of planar surface patches,” in Proceed-
ings Intelligent Robots and Systems. IEEE, 1998, pp.
197–203.

[5] M Irani and P. Anandan, “All about direct methods,”
in Vision Algorithms: Theory and practice, W. Triggs,
A. Zisserman, and R. Szeliski, Eds. Springer-Verlag,
1999.

[6] P. H. S. Torr and A. Zisserman, “Feature based methods
for structure and motion estimation,” in Vision Algo-
rithms: Theory and practice, W. Triggs, A. Zisserman,
and R. Szeliski, Eds. Springer-Verlag, 1999, pp. 278–
295.

[7] Gregory D. Hager and Peter N. Belhumeur, “Ef£-
cient region tracking with parametric models of geom-
etry and illumination,” IEEE Transactions on Pattern
Analisys and Machine Intelligence, vol. 20, no. 10, pp.
1025–1039, 1998.

[8] F. Dellaert and R. Collins, “Fast image-based tracking
by selective pixel integration,” in ICCV99 Workshop on
frame-rate applications, 1999.

