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Abstract

We present an efficient algorithm for fitting a morphable

model to an image sequence. It is built on a projective ge-

ometry formulation of perspective projection, which results

in a linear mapping from 3D shape to the projective plane,

and a factorisation of this mapping into matrices that can be

partially computed off-line. This algorithm can cope with

full 360 degrees object rotation and linear deformations.

We validate our approach using synthetically generated and

real sequences. Compared to a plain Lucas-Kanade imple-

mentation, we achieve a six fold increase in performance

for a rigid object and two fold for a non-rigid face.

1. Introduction

Tracking non-rigid objects and in particular human faces

is an active research area for its applications in advanced

human computer interaction, performance-driven realistic

graphical animation [18] or face recognition [3]. Reliable

tracking of faces under large rotations is still a challenging

task in computer vision because the face is a low-textured

and deformable object whose appearance changes dramati-

cally with pose or facial expression.

Tracking approaches are based on estimating the param-

eters of a function that describe the pose and deformation of

the face in each image of a sequence. This can be achieved

by matching a sparse collection of features (feature-based

methods) or by directly minimising the difference in im-

age intensity values (direct approaches). The main advan-

tage of feature-based methods is the possibility of working

with very large inter-frame motion [20]. This makes them

best suited for detection. They require, nevertheless, the

existence of highly textured patches uniformly distributed

over the target face. Direct approaches, on the other hand,

assume that inter-frame motion is small, as is the case in

video sequences. They can be used for tracking low or

smooth textured surfaces, like human faces [11]. Tracking

is usually posed as a Gauss-Newton-like optimisation pro-

cess, minimising a similarity measure between a reference

template (the face model) and the target image. Their main

advantage is accuracy, since all visible pixels contribute to

the minimisation.

Direct approaches are based on generative linear mod-

els of appearance, such as the Active Appearance Mod-

els (AAMs) [6] or the 3D Morphable Models (MMs) [2].

Matthews and Baker used the Inverse Compositional Im-

age Alignment (ICIA) algorithm for tracking faces in real-

time using AAMs [11]. Their solution is possibly the fastest

introduced so far, since the Jacobian and Hessian matrices

emerging in the optimisation can be computed off-line. One

limitation of their approach is that AAMs are intrinsically

2D models and, although they can be used to track a 3D ob-

ject, this is achieved at the expense of requiring up to 6 times

more shape parameters. In consequence, the minimisation

must be properly constrained in order to achieve a robust

tracker [12]. Also, 2D models have problems for dealing

with self occlusions appearing, for example, with large face

rotations. 3D MMs, on the other hand, deal naturally with

large rotations and self occlusions. Unfortunately, they have

not been used for tracking, since no efficient fitting proce-

dure has been introduced so far. Romdhani and Vetter [14]

also used ICIA for efficiently adjusting a 3D MM to the im-

age of a static face. Their solution cannot be used for track-

ing since their Jacobian and Hessian matrices are locally

valid [14]. An important drawback of both approaches is

that they work under weak-perspective imaging conditions.

This restriction is necessary to decouple the rigid and non-

rigid components of target motion. This is a limitation if,

for example, we would like to track a face imaged by a cam-

era with short focal length and strong perspective distortion

(e.g a low-cost web-cam).

In this paper we introduce a procedure for efficiently fit-

ting a 3D MM to a target image sequence using a full pro-

jective camera model. It achieves efficiency by factoring

the Jacobian and Hessian matrices appearing in the Gauss-

Newton optimisation into the multiplication of a constant
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matrix, depending on target structure and texture that can be

computed off-line, and a varying matrix that depends on the

target motion and deformation parameters. Our approach

is directly related to the work of Hager and Belhumeur [8]

that introduced an efficient procedure for tracking a planar

region with parametric models of geometry and illumina-

tion. It can be considered as an extension of their approach

to the case of a 3D deforming target. We also introduce

necessary and sufficient conditions related to the applica-

bility of this approach. It is also related to Xu and Roy-

Chowhury’s technique for efficiently estimating 3D motion

and illumination [19]. Their approach is based on ICIA and,

like Romdhani and Vetter’s, their Jacobian and Hessian ma-

trices are only locally valid and have to be recomputed.

In summary, the main contributions of this paper are:

• We revisit Hager and Belhumeur’s [8] fitting algorithm

and provide necessary and sufficient conditions that

must be satisfied to use their approach.

• We introduce a new efficient fitting algorithm based on

a projective geometry formulation of perspective pro-

jection.This algorithm can cope with full 360 degrees

object rotation and linear deformations. It naturally

decouples rigid and non-rigid deformations within a

projective camera framework.

2. Model-based tracking

The information about the structure, texture and modes

of deformation of our target object will follow a convention

similar to that used for the 3D MMs [2]. We model shape

and colour separately, both on a common bi-dimensional

frame space denoted by v. Then, S(v), mapping the frame

space into the R
3 3D space, defines the 3D shape of an ob-

ject (see Fig. 1-(b)). Similarly T(v) (see Fig. 1-(a)), map-

ping the bi-dimensional frame space into RGB (if coloured)

or grey scale (if monochrome) texture space, defines colour

or texture.

2.1. Motion model

The 3D motion of a point is the composition of a rigid

motion caused by the translation and rotation of the ob-

ject in space and a non-rigid motion caused by the de-

formation of the object. Let x(i) = (xi, yi, zi)
⊤ de-

note the co-ordinates of a point in 3D space and let S =
(x(1)⊤,x(2)⊤, . . . ,x(3)⊤)⊤ be the 3D structure represented

by a set of N points in space.

The non-rigid motion of point x(i) can be described as a

linear combination of k basis points. So, the shape of any

configuration of the non-rigid object is expressed as a linear

combination of a set of k basis shapes stored in matrix Bs

plus a mean vector S0: S = S0 + Bsc, S,S0 ∈ R
3N×1,

Bs ∈ R
3N×k, c ∈ R

k×1, where c = (c1, c2, . . . , ck)⊤ is the

vector of shape configuration weights. The mean vector S0,

also called rigid component, represents the rigid configura-

tion of the object, and the basis Bs represents the allowed

modes of deformation.

The 3D shape can rotate and translate rigidly in space.

Let R(α, β, γ) ∈ R
3×3 and t ∈ R

3×1 be the rotation ma-

trix and translation vector representing such motion. And

let x
(i)
r ∈ R

3 be the 3D co-ordinates of point (i), expressed
in the co-ordinate system of the camera associated to a ref-

erence image Ir (see Fig. 1-(c)) , whose optical centre is

Cr. When the camera moves, the new camera position is

Ct (see Fig. 1-(d)). The co-ordinates of x
(i)
t , in this new

reference, after a non-rigid deformation ct are given by

x
(i)
t =Rt(x

(i)
r + B

(i)
s ct) + tt, (1)

with Rt and tt being the rigid body transformation between

reference systems Cr and Ct. The deformations are local

to each point but they are globally parametrised by the de-

formation coefficients ct.

Equation (1) can be rewritten as a linear transformation

between x
(i)
r and x

(i)
t . This can be achieved by assuming

that each point x
(i)
r is located on a scene plane d

(i)
r units

away from Cr and with normal n
(i)
r . So (1) may be rewrit-

ten as

xt =

(

Rt + (RtBsct + tt)
n⊤

r

dr

)

xr, (2)

where we have dropped superscripts for notational conve-

nience. Let ur = 1
zr

Kxr and ut = 1
zt

Kxt denote respec-

tively the projection of x onto cameras Cr and Ct, then (2)

may be expressed as

ut ∼ K

(

Rt + (RtBsct + tt)
n⊤

r

dr

)

K
−1

︸ ︷︷ ︸

Ht

ur = f(ur,µt),

(3)

where Ht is the homography induced by plane nr between

cameras Cr and Ct. Points ur and ut represent coordi-

nates in P
2, the projective plane. The brightness constancy

assumption can then be stated as

Ir(p(ur)) = It(p(f(ur,µt))), (4)

where p : P
2 7→ R

2 is the projective to Cartesian mapping.

Note that, since f depends on d
(i)
r and n

(i)
r , each vertex will

induce a different f (i)(u,µ), which is parametrised with the

common object motion parameters µ. For notational con-

venience we will not represent this dependency in the rest

of the paper. See Fig. 1 for further details.

2.2. Tracking as an optimisation problem

Tracking the object at time t + 1 is equivalent to find-

ing the motion parameters µt+1 that align the projection of
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Figure 1. Motion model. (a) Unfolded shape in texture space. We use green and blue colours to display the co-ordinates of triangles i and

j respectively. (b) The reference shape acts as the model rigid component. (c) We project this shape onto a reference image which links

texture and image co-ordinates. (d) We compute actual 3D target co-ordinates by modifying the reference shape using a linear combination

of deformation basis. This shape is then projected onto the current frame.

the target with the current image. This can be achieved by

solving µt+1 = argminµ J (µ), where

J (µ) = ‖Ir[p(ur)] − It+1[p(f(ur,µ))]‖2, (5)

Ir[p(ur)] and It+1[p(f(ur,µ))] are N × 1 vectors formed

by stacking all image values for ui, with i = 1 . . . N .
Minimising (5) is a non-linear optimisation task that was

originally introduced in the seminal work of Lucas and
Kanade [10]. If the vector of motion parameters µ is known
at a previous time instant, µt, then (5) may be linearised by
making a Taylor series expansion at µt

J (δµ)=

‚
‚
‚
‚
‚
‚
‚

Ir[p(ur)]−It+1[p(f(ur, µt))]
| {z }

e

−
∂It[p(f(ur, µ̂))]

∂µ̂

˛
˛
˛
˛
µ̂=µ

t

| {z }

J(µ
t
)

δµ

‚
‚
‚
‚
‚
‚
‚

2

,

(6)

where J(µt) is the Jacobian matrix relating changes in tem-

plate intensity values with motion parameters and e is the

brightness error resulting from projecting the object shape

with parameters µt onto image acquired at t + 1. Note that
the output of the minimisation is δµ, the motion parame-

ters’ increment from instant t to instant t+1. The minimum

of (6) is given by δµ = J(µt)
+e. We usually make a few

iterations in a Gauss-Newton scheme until convergence.

3. Efficient tracking

The major limitation of the solution introduced in the

previous section is the cost associated with the computation,

for each incoming image, of J(µt) in (6), since it is a ma-

trix with as many rows as points in the model and as many

columns as parameters in µ. In the case of a typical MM

this represents several dozens of thousand rows and up to a

few tens of columns. In this section we introduce necessary

and sufficient conditions that must be satisfied by f(u,µ)

to guarantee that J(µt) can be factored into a large constant
matrix, that can be precomputed off-line, and a small matrix

that must be recomputed on-line.

3.1. The Gradient Equivalence Equation

Taking derivatives in equation (4) w.r.t. the shape coor-
dinates

»
∂Ir[p(x̂)]

∂x̂

˛
˛
˛
˛
x̂=ur

–⊤

=

"

∂It[p(ŷ)]
∂ŷ

˛
˛
˛
˛
ŷ=f(ur,µ

t
)

#
⊤»

∂f(x̂, µt)
∂x̂

˛
˛
˛
˛
x̂=ur

–

.

(7)

This is the Gradient Equivalence Equation (GEE) because

it relates the gradients of the target projection in the refer-

ence image with the gradients in the image at time t. We

are now ready to derive a proposition that introduces a nec-

essary condition on f(u,µ) to express the image gradients

emerging in J(µt) in terms of the gradients of the template.

Proposition 3.1. The image gradient of a point in the pro-

jective plane P
2 is a projective line incident to the point.

Proof. Let I : R
2 → R be an image intensity function on

the usual plane and p : P
2 → R

2 be a mapping function

from the projective to the Cartesian plane, p : (x, y, w) 7→
(i, j) = ( x

w
, y

w
). The gradient of the composite function

I ◦ p at point u = (x, y, w)⊤ ∈ P
2 is computed using the

chain rule,

[
∂I(p(x̂))

∂x̂

∣
∣
∣
∣
x̂=u

]

=

[
∂I(p̂)
∂p̂

∣
∣
∣
∣
p̂=p(u)

]⊤ [
∂p(x̂)

∂x̂

∣
∣
∣
∣
x̂=u

]⊤

,

=
[
∇iI ∇jI

]⊤
[ 1

x
0 − x

w2

0 1
y

− y
w2

]

,

=
[

1
w
∇iI

1
w
∇jI − 1

w2 (x∇iI + y∇jI)
]

︸ ︷︷ ︸

l

.



Vector l is a line incident with u, since l⊤u = 0.

In particular, as the following corollary states, the motion

model used in (3) satisfies Prop. 3.1. Many other transfor-

mations such as e.g. motion parallax do not.

Corollary. The GEE holds in P
2 when the motion model is

a homography.

Proof. It is trivial from (7).

3.2. Using model texture

Many previous approaches to 3D tracking, e.g. [7, 15],

use a reference image as model for extracting texture infor-

mation for tracking. This information is valid in the neigh-

bourhood of the reference image. The tracker performance

degrades for large rotations [14, 19]. Here we introduce

a procedure that uses the morphable model texture for the

minimisation in (6).

According to Prop (3.1) and its corollary we can use the

GEE if our motion function is a homography. Hence, it can

be a combination of several homographies. Let us assume

that H
(i)
0 is the homography between texture co-ordinate

v(i) and its projection onto the reference image u
(i)
r (see

Fig. 1 (a-c)). Then, we can express (4) as T[p(v)] =
It[p(f ′(v,µt))], with f ′(v,µt) = HtH0v. We may now

rewrite equations (6)-(7) using texture information instead

of a reference image. Now, from J(µt) and and (7) we get

J(µt) =

[
∂It[p(ŷ)]

∂ŷ

∣
∣
∣
∣
ŷ=f ′(v,µ

t
)

][
∂f ′(v, µ̂)

∂µ̂

∣
∣
∣
∣
µ̂=µ

t

]

,

∂T[p(x̂)]

∂x̂

∣
∣
∣
∣
x̂=v

=

[
∂It[p(ŷ)]

∂ŷ

∣
∣
∣
∣
ŷ=f ′(v,µ

t
)

][
∂f ′(x̂,µt)

∂x̂

∣
∣
∣
∣
x̂=v

]

.

From where we can express J(µt) in terms of the model
texture

J(µt)=

»
∂T[p(x̂)]

∂x̂

˛
˛
˛
˛
x̂=v

–

| {z }

D

»
∂f

′(x̂, µt)
∂x̂

˛
˛
˛
˛
x̂=v

–−1

| {z }

T−1

»
∂f

′(x, µ̂)
∂µ̂

˛
˛
˛
˛
µ̂=µ

t

–

| {z }

F

.

(8)

3.3. Efficient optimisation by factorisation

The result introduced in (8) improves the performance

of the tracker, since the texture gradients may be computed

off-line (matrix D is constant). However, we still have to

compute the derivatives T−1 and F for each coordinate in the

target region. Hager and Bellhumeur, [8], solved the prob-

lem by factorising DT−1
F into the product of two matrices,

DT
−1

F = SM. Matrix S depends only on the structure of the

target (vertexes, plane normal, etc.), and matrix M depends

on the motion parameters. In this section we introduce a

proposition that provides sufficient conditions under which

the factorisation can always be achieved. Then we compute

a factorisation for the motion model used in our tracker.

Lemma 3.2. We may reorder arbitrarily a sequence of ma-

trix operations (sums, products, reshapings and rearrange-

ments) using reversible operators.

For a proof of the previous lemma see [4]. In conse-

quence:

Proposition 3.3. DT−1
F can be factored into DT

−1
F = SM

if it can be expressed in terms of a sequence of matrix oper-

ations (sums, products, reshapings and rearrangements).

Proof. It is immediate from Lemma 3.2.

We use operators such as Kronecker product,⊗, and col-

umn vectorisation vec(A) [9, 4]. We also introduce the op-

erator ⊙ which performs a row-wise Kronecker product of

two matrices. We give details in appendix A.

3.4. Factorisation of J(µt)

The starting point is to identify the structure and motion

terms for matrices T−1 and F. The first term can be inverted

using the Sherman-Morrison rule, then

T
−1 =[HtH0]

−1 = H
−1
0 K

[

Rt + (RtBct + tt)
n⊤

r

dr

]−1

K
−1

∝H−1
0 K

[
I3 + n⊤(Bct − t)I3 + (t − Bct)n

⊤
]
R
⊤
K
−1,

(9)

where n =
n⊤

r

dr

, t = −R⊤t tt and R = Rt. The Jacobian of

the motion model is given by

F = K

[
Ṙ

(
K
−1u + zBct

)
zI3 zRB

]
, (10)

where z = n⊤
K
−1

H0v is a constant term for each point and

Ṙ represents the tensor derivative of rotation matrix R. The

product of these two matrices is rearranged using the lem-

mas given in appendix A. Motion terms are globally com-

mon for the whole target, so we can stack all constant terms

for each target coordinate into a single matrix S, which mul-

tiplies a matrix built from the motion terms, J = SM, with

S =






S(1,1) S(1,2) S(1,3) S(1,4) S(1,5)

...

S(N,1) S(N,2) S(N,3) S(i,4) S(N,5)






and

M =









Mαt
0 0 0 0

0 Mβt
0 0 0

0 0 Mγt
0 0

0 0 0 Mt 0

0 0 0 0 Mc









.

In appendix B we give more details on the derivation.



4. Tracking algorithm

In this section we present the complete tracking algo-

rithm (see Alg. 1). The off-line part of the algorithm com-

putes constant matrices S and Λ, corresponding to each of

the 3D model vertexes (see lines 2 and 3). The on-line part

(lines 7 to 19) first determines the set of visible 3D points,

then performs image rectification and Gauss-Newton itera-

tion, grey level error computation, motion parameters’ in-

crement computation and, finally, additive parameters up-

date .

Algorithm 1 Non-rigid 3D tracking algorithm.

Off-line:

1: for all x 3D vertex in the model do

2: Compute and store S(x).
3: Compute and store Λ(x) = S(x)⊤S(x).
4: end for

On-line:

5: Initialise motion parameters µ.

6: for all I, image in a sequence do

7: Compute V, the set of visible 3D vertexes (Z-buffer

algorithm).

8: while no convergence do

9: Compute M(µ).
10: for all x ∈ V do

11: Compute e=It[p(f ′(v,µ))] − T(p(v)).
12: Compute and store A(x) = M(µ)⊤S(x)⊤e

13: end for

14: Compute Λ =
∑

x∈ V Λ(x).

15: Compute N = M(µ)⊤ΛM(µ).
16: Compute A =

∑

x∈ V A(x).
17: Compute δµ = −N−1

A.

18: Update µ = µ + δµ.

19: end while

20: end for

5. Experiments

5.1. Rigid tracking

The goal of these experiments is to test the validity of

our tracker. We use a synthetic video sequences created

from two morphable models: a textured tea-box comprising

30, 000 triangles (Fig. 2, row 1) and a human head (Fig. 2,

row 3). We render the sequences using pov-ray1.

The textured tea-box rotates around each reference axis

for almost 360 degrees in a 600 frames sequence. We com-

pute the piecewise affine transformation between the tex-

ture and reference coordinates, and the structure matrix S.

The algorithm can successfully track the target for extreme

rotations even when the model texture was not seen in the

1Freely available at http://www.povray.org

reference image (see Fig. 2, row 2). This confirms exper-

imentally the theoretical correctness of the algorithm. The

human head is a ≈ 150, 000 triangles model. The sequence

is 400 frames long and we rotate the head in the Y axis

±70o, then in the X axis ±60o and finally a joint rotation

in both X and Y for ±30o. The tracking is reliable even

for extreme rotations (see Fig. 2, rows 4-5), particularly for

rotations in the X axis, which are specially difficult given

the lack of texture.

5.2. Non­rigid tracking

The performance of the tracker estimating non-rigid mo-

tion is verified using both synthetic and real-world se-

quences. The synthetic sequence comprises the first 140
frames of a sequence containing a deformable model. The

model performs set of prototypical expressions whilst rotat-

ing around Y axis 40o. The deformable model is built from

our head model (see Fig. 3, row 1), which is down-sampled

to barely 11, 000 triangles. Then, the model mesh is ani-

mated using linear muscles as in [13]. The linear basis of

deformation, Bs, are computed using PCA over the gener-

ated meshes. We can see that the tracker is able to cope

successfully with all the range of expressions, which proves

the reliability of the method (see Fig. 3, rows 2-3).

Finally, we process a real example involving translations,

rotations and face deformations. We use the previously gen-

erated shape basis to model the deformations of the face.

These basis were generated synthetically from a graphical

model. The model is initialised by fitting the 3DMorphable

Model to the first image of the sequence [14]. The algorithm

performs quite well during the rigid part. The non rigid sec-

tion performs also remarkably well, except in those parts of

the sequence in which the actor performs expressions which

were not included in the training set (see Fig. 3, row 4).

5.3. Timing results

We now compare the computation time of our algorithm

with a Lucas-Kanade implementation [10]. Both algorithms

were implemented using MATLAB. An important issue in

our algorithm is that, after Jacobian factorisation, we get

heavily sparse matrices (approximately 70% of the elements

are zero). We have partially considered this fact in our im-

plementation, which could be further improved using tech-

niques such as e.g. those in [16].

For the rigid case we use the 600 frames long tea-box se-

quence. We compute both the time to process a single frame

and the number of iterations to reach the frame optimum

for each algorithm. We restrict the maximum number of it-

erations per frame to 10 although the algorithm may finish

earlier. Timing results yield an average time per frame of

0.6543 seconds for our technique and 3.4529 for the Lucas-

Kanade algorithm.



(a) (b) (c) (d) (e)

Figure 2. First row: selected frames from the synthetic tea-box sequence. Second row: blue dots represent the projections of the model

vertexes using values estimated from the tracker. Third row: selected frames from the synthetic head sequence showing extreme motion.

Fourth row: tracking results from the head sequence. A down-sampled mesh is projected onto each image showing the motion estimation

from the tracker. Fifth row: Rotation estimation from the tracker vs. ground truth for the tea-box, (a)-(c), and the head sequences, (d)-(e).

We compute timing results for the non-rigid case using

the synthetic deforming face image sequence. We restrict

the optimisation to 20 iterations per frame. In this case we

require 1.892 seconds to process one frame, whereas the

Lucas-Kanade algorithm needs 3.563 seconds. For the non-

rigid case, our algorithm is only twice as fast as Lucas and

Kanade. The decrease in performance compared to the rigid

case is caused by the higher complexity and size of the ma-

trices involved in the factorisation.

6. Conclusion and future work

In this paper we have introduced an efficient procedure

for fitting a 3D MM to a target image sequence. It gen-

eralises Hager and Belhumeur’s efficient factorisation algo-

rithm to the case of a 3D deforming target. One of the major

limitations of the factorisation-based approach is that it is

very difficult to say whether the algorithm can be used for

a particular motion model [1]. In this paper we have pro-

vided necessary and sufficient conditions that determine the

applicability of the algorithm for a given motion model.

We compute the target image gradients off-line, by ex-

pressing them in terms of the gradients of the MM texture.

Also, by using the MM texture as model template, instead

of a reference image, we are able to track the target for

360 degrees rotations. As far as we know, our approach

is the only direct method that is able to track all 360 de-

grees without drift. This result was previously achieved by

Vaccheti et al using a feature-based approach with a set of

key-frames [17]. In this respect, our model may be seen



Figure 3. First row: selected frames from the synthetic deformable sequence showing some of the rendered expressions. Second row:

Results from the tracker using linear deformation basis: blue dots stand for the projections of the model vertexes. We also coloured in

magenta several key vertexes in eyebrows, jaw, lips and nasolabial wrinkles to show the tracked expression. Third row: plots of the first five

deformation coefficients. Fourth row: results for a real sequence. We outlined several key vertexes to show the quality of the estimation.

as a generalisation of the key-frames in [17] to the case in

which we had one key-frame per surface normal. This was

experimentally tested in the tea-box image sequence.

Many non-rigid tracking algorithms, e.g. [11, 14], use

weak-perspective camera models to decouple rigid and non-

rigid motion components. Our tracking algorithm naturally

deals with the more general projective camera model.

We have conducted various synthetic and real experi-

ments validating the robustness of the tracker for large rota-

tions, self occlusions and strong non-rigid deformations.

A future research venue would consider tracking robust

to illumination changes. This could be solved using the

MM texture basis to model illumination variations. This

new model could be efficiently fitted to the image sequence

using the factorisation scheme introduced in this paper. A

related solution for the 2D planar case has been recently in-

troduced in [5].
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A. Matrix lemmas

Lemma A.1. Let A and B be m × n and n × p matrices

respectively. Their product AB can be rewritten as: AB =

(
Im ⊗ vec(B)⊤

) (
Im ⊙ A

)
, with Im ⊙ A =






Im ⊗ a1

...

Im ⊗ am




,

being a⊤
i matrix A rows.

Next results, which are used in our derivations, follow

from the above lemma

• Corollary 1:

Am×nbn×1 =
(

Im ⊗ b⊤
)

vec(A⊤).

• Corollary 2:

(a⊤
n×1bn×1)Im = (Im ⊗ a⊤)(Im ⊗ b).

B. Deriving the factorisation equations

The goal is to rearrange the product of equations 9 and 10

such we separate the structure from the motion. For each

target coordinate, i, we have the product two 3× 3 by 3× 6
matrices. Each column of this product is then factorised us-

ing lemmas from appendix A into a matrix containing only

constant terms, Si, and a matrix depending on the current

target motion, Mi:

J
(i)=DiK

[
S(i,1)Mαt

S(i,2)Mβt
S(i,3)Mγt

S(i,4)Mt S(i,5)Mc

]
,

where the first three products refer to the rotation parame-

ters, the fourth product depends on the translation and the

remaining K columns, S(i,5)M5, depend on the shape basis.

Structure terms for each target coordinate are:

S
⊤
(i,{1,2,3}) =



















I3 ⊗ (H0v)⊤
(
I3 ⊗ n⊤

i Bi

) (
I3K ⊗ (H0v)⊤

)

(
I3 ⊗ n⊤

i

) (
I9 ⊗ (H0v)⊤

)

Bi

(
IK ⊗ n⊤

i

) (
I3K ⊗ (H0v)⊤

)

(
I3 ⊗ vec(ni(H0v)⊤)⊤

)

(
I3 ⊗ vec(ziB

⊤
i )⊤

)

(
I3 ⊗ n⊤

i Bi

) (
I3K ⊗ vec(ziB

⊤
i )⊤

)

zi

(
I3 ⊗ n⊤

i

) (
I9 ⊗ vec(B⊤i )⊤

)

Bi

(
Ik ⊗ n⊤

i

) (
I3K ⊗ vec(ziB

⊤
i )⊤

)

zi

(
I3 ⊗ n⊤

i

) (
I9 ⊗ vec(B⊤i )⊤

)



















S
⊤
(i,4) =









ziBi

ziI3 ⊗ n⊤
i Bi

ziI3 ⊗ n⊤
i

ziBiIK ⊗ n⊤
i

ziI3 ⊗ n⊤
i









,

S
⊤
(i,5) =









ziBi

zi

(
I3 ⊗ n⊤

i Bi

) (
I3K ⊗ vec(Bi)

⊤
)

zi

(
I3 ⊗ n⊤

i

) (
I9 ⊗ vec(Bi)

⊤
)

ziBi

(
IK ⊗ n⊤

i

) (
I3K ⊗ vec(Bi)

⊤
)

zi

(
I3 ⊗ n⊤

i Bi

)









.

We build motion matrices similarly:

M∆,∆∈{αt,βt,γt} =






















vec(K−⊤
Ṙ
⊤
∆R)

vec(K−⊤
Ṙ
⊤
∆R

(
I3 ⊗ c⊤t

)
)

−vec(K−⊤
Ṙ
⊤
∆R

(
I3 ⊗ t⊤

)
)

−vec(K−⊤
Ṙ
⊤
∆R

(
c⊤t ⊗ I3

)
)

vec(vec(R⊤Ṙ∆K
−1)t⊤)

vec(
(
I3 ⊗ c⊤t

)
Ṙ
⊤
∆R)

vec((ct ⊗ I3) Ṙ
⊤
∆R

(
I3 ⊗ c⊤t

)
)

−vec((ct ⊗ I3) Ṙ
⊤
∆R

(
I3 ⊗ t⊤

)
)

−vec((I3 ⊗ ct) Ṙ
⊤
∆R

(
c⊤t ⊗ I3

)
)

vec((I3 ⊗ ct) Ṙ
⊤
∆R

(
t⊤ ⊗ I3

)
)






















Mt =









R
⊤

((I3 ⊗ ct) R
⊤

−((I3 ⊗ t) R⊤

−((ct ⊗ I3) R
⊤

((t ⊗ I3) R
⊤









, Mc =









IK

((I3 ⊗ ct) ⊙ IK

−((I3 ⊗ t) ⊙ IK

−((ct ⊗ I3) ⊙ IK

((t ⊗ IK)










