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Abstract. We present a method that estimates high level animation
parameters (muscle contractions, eye movements, eye lids opening, jaw
motion and lips contractions) from a marker-less face image sequence.
We use an efficient appearance-based tracker to stabilise images of upper
(eyes and eyebrows) and lower (mouth) face. By using a set of stabilised
images with known animation parameters, we can learn a re-animation
matrix that allows us to estimate the parameters of a new image. The
system is able to re-animate a 32 DOF 3D face model in real-time.

1 Introduction

Automated computer animation of faces and avatars is an area of intense re-
search for its application in the television, computer games and film industry.
Performance driven animation is usually done by motion capture using markers
on the face. Computer vision provides an alternative non-intrusive marker-less
approach to motion capture.

Generally, the face shapes of the actor and that of the animated model are
different. So, a method to adapt the motion of the former to the latter is needed
[1]. There are two ways to achieve this: parametrisation and motion modification.
By facial motion modification we mean to adapt the vertex deformation due to
facial motion to the new facial model. In [1] were introduced some algorithms
and heuristics to translate the facial expression motion from a facial model into
another with different surface structure. Procedures based on parametrisation
aim to describe motion with a set of values that, when applied to any facial
model, will produce a similar expression. Among the parametrised systems we
can distinguish those that use standard facial expressions coding, like FACS[2,
3] or MPEG-4 FAPS [4,5], and those that use and ad-hoc coding [6,7]. When
the abstraction level of the animation parameters is high, then the estimation of
these parameters is more difficult. This is due mainly to the weak relationship
between image measurements and control parameters.



In this paper we present a method that estimates high level animation pa-
rameters from a marker-less face image sequence. We will use a muscle-based
3D face model resulting in a parametrised motion capture algorithm. We have
previously developed an efficient appearance based tracker [8] that locates and
tracks the eyes and the mouth in spite of the non-rigid motion of the face. The
main contribution of this paper is a procedure to estimate the animation param-
eters of a 3D face model from stabilised images of the eyes and mouth obtained
from our tracking algorithm. This procedure is composed of two training steps,
one for building an eigenspace for tracking, and another one for learning a lin-
ear relation between the animation parameters and the stabilised images. In the
following sections we will present this algorithm and some results.

2 Appearance based tracking

The tracking algorithm presented in this section can be seen as an extension
of the Hager and Belhumeur’s Jacobian factorisation [9] where we impose no
restrictions on the PCA-based subspace model used. It is also related to the
Black and Jepson’s Figentracking [10], but instead of computing the motion
parameters by using a gradient descent procedure in which the target image
Jacobian must be computed for each frame in the sequence, as in [10], we use
a set of precomputed motion templates which alleviate the computations that
have to be performed on line.

Let P be the image of a target. The subspace constancy equation holds for
all pixels in the target [10]:

I(f(x,p), 1) = Be(t)](x) Va e P, (1)

where x is the vector of co-ordinates of a point in image I, B is the subspace
base matrix, c is the vector of subspace coefficients, and I(f(x, pt), t) is the image
acquired at time ¢ rectified with motion model f(x, ) and motion parameters p.
By [Bc](z) we denote the value of Be for the pixel with position x in the image.
Matrix B is of dimension N x k, where N is the number of pixels per image and
k is the number of basis vectors in the subspace. Intuitively (1) states that the
rigidly rectified image I(f(x,u),t) can be expressed as a linear combination of
the appearance subspace basis vectors, B3.

Tracking consists on estimating for each image in the sequence the values of
the motion, pu, and appearance, ¢, parameters which minimise the error function

E(p,c) = |[1(f(x, o), t) — Be(t)[,

where I(x) is I(x) in vector form (scanning I by rows or columns). In order
to make Gauss-Newton iterations, a Taylor series expansion of I at (x,t) is
performed, producing a new error function

E(bp,c) = [Mp + I(f(x, p)) — Be||?,

3 We assume that that the average image has been included as the first column of B.



where M = %ﬁ’”)) is the N x n (n = dim(w)) Jacobian matrix of I (note that
dependence on ¢ has been dropped for convenience). In the following subsections
we will introduce a procedure for precomputing a set of motion templates which

efficiently minimise (2) for any linear subspace model.

2.1 Jacobian matrix factorisation

One of the obstacles for minimising (2) on line, while tracking, is the com-
putational cost of estimating M for each frame. Following an approach simi-
lar to [9], M can be expressed in terms of the gradient of the subspace ba-
sis vectors, By, which are constant, and the motion and appearance param-
eters (p,c), which vary over time. If we choose a motion model f such that
Cfx(xi, ) ™t fu(xi, ) = T(x;)E(p, ¢), then M can be factored into

By (x1)I'(x1)
M(ch): Z(IU’7C)ZMOZ(/'L7C)>
By (xn)T'(xn)

where By (x;) is the Jacobian of B with respect to the image co-ordinates. Then
My is a constant matrix and £ depends on ¢ and pu.

2.2 Minimising E(u,c).

As M depends on both, p and ¢, (2) defines a nonlinear cost function over du
and c. The optimisation algorithm that we use first assumes ¢ constant and
computes the minimum of E(u,c) w.r.t. u,

op = —(x" Mz)"'E Mg [I(f(x, p),t +7) —Be(t)],
where M = MJ My. Then it minimises E over ¢ assuming p constant,
c=B"Mop +I(f(x,p),t +7)].

Once we have ¢, we can refine the estimation of du by using (2.2) again. Normally
two or three iterations are enough to reach a stable solution. We have developed
the factorisation for the rotation-translation-scale, the affine and the projective
motion models [8]. In this paper we will use a projective motion model, f(x, pu) =
Hx, where H is a 3 x 3 homography.

3 Reanimation

The philosophy to performance driven animation of a 3D face model we propose,
is similar to the Valente and Dugelay’s one [4]. We will use stabilised view images
of the user’s eyes and mouth with known animation parameters to estimate a
linear relationship between grey levels and animation parameters. In order to



estimate the control parameters of their face model, Valente and Dugelay use
optical flow and not raw grey levels as we do. They use a very realistic 3D face
model of each particular user. Therefore, by driving their model with a set of
control parameters it was possible to get the corresponding optical flow for each
face region. Valente and Dugelay use a feature based tracker (five features) and
a Kalman filter to get the normalised images of different face regions. As their
tracker is not designed to deal with non-rigid motion, it is not clear how is it
going to work with extreme facial expressions.

In our case, the appearance based tracker of section 2 allows us to track
the most informative face areas in spite of the non-rigid motion due to facial
expressions. With the tracker we can extract stabilised images of any part of the
face for each frame in the sequence. In this section we are going to show how to
estimate the face animation parameters from stabilised images of the lower and
the upper part of the face.

3.1 Animation parameters estimation

In order to estimate the animation parameters for a given face region we will
use e example images each with N pixels. Let I be an N X e matrix, where each
column i; has one of the example images (e.g. scanning the image by rows),
and let A be an a x e matrix, where each column a; represents the animation
parameters, a, corresponding to the appearance in i; . Then D, is an (N +a) x e

matrix:
I ip i
D, = {WAA} = [WA[al ae]], (2)

where W4 is a diagonal matrix of weights that takes into account the different
scale of the animation parameters and grey levels. The weight matrix we use, is
rI where 72 is the rate between the grey levels variability and total variability
in the animation parameters. In the Direct Appearance Models framework [11]
it is used a similar matrix but for grey levels and shape parameters.

By computing PCA of matrix D., we get B;, the subspace basis expanded
by the I eigenvectors® corresponding to the bigger eigenvalues of the covariance
matrix (D.D. ), which can be written as

_ | Bi
B = |:Ba:| .

Using the (N + a) x [ matrix, B;, the vector c;, that represents the relation
between the images in I and the animation parameters in A can be estimated.
By using c;, we can approximate each pair (i, a) by (i*,a*) in such a way that:

v =Bjc;,c; =B, i
Waa™ et Wgpa |~

4 We assume, that all examples, i;, and animation parameters, a;, are mean centred.
5 Note that we use two eigenspaces, one for tracking and the other for reanimation.



Given an image i, and B; and B, matrices from training, the re-animation problem
is to estimate the corresponding animation parameters, a*. From the structure
of B; we can write B;c; = i, where ¢; is the only unknown. In general, the number
of image pixels N is much bigger than [ and the solution for ¢; will be given by
the minimisation of

c; =arg II}:lln |[Bic; — i||* = pinv(B;)i, (3)

where the [ x N matrix pinv(B;), is the pseudo-inverse of B; computed by using
SVD. And then, the animation parameters that corresponds to the image i are
given by

Waqa* = B,pinv(B;)i =R} i, (4)

where the a x NV matrix, R}, is constant and can be precomputed. As we get Wqa*
from (4), it is needed to multiply it by (W4)~! in order to obtain the animation
parameters estimation, a*, in the right scale.

4 Experiments

In all the experiments conducted® in this section the face is splited in the upper
face (the eyes region) and the lower face (mouth region) areas. As the motion of
the two regions is almost independent we can build two appearance models need-
ing less examples on each (a modular eigenspace). Nevertheless, our tracker uses
the grey levels from both regions to compute motion parameters but maintaining
separate appearance parameters.

4.1 Quantitative experiments

In the first experiment we would like to assert the quality of the re-animation.
To do so, we use a modified version of the Parke and Waters’ 3D face model [12]
with 32 degrees of freedom. The 3D face model is used to render three image
sequences: a training sequence for the eyes (630 images), a training sequence for
the mouth (540 images) and a test sequence (1225 images, see figure 1). The
facial expressions in the test sequence are different from the ones used in the
training sequences.

Fig. 1. Some of the 75 key-frames used to render the test sequence (1125 images).

5 See videos in http://www.dia.fi.upm.es/~1baumela/FaceExpressionRecognition/



In the eyes training sequence there is only non-rigid motion in the upper
area of the face. Therefore, the stabilised images of the eyes can be extracted
automatically by tracking the mouth area with a simple template tracker (using
a mouth template). Similarly, as in the mouth training sequence there is only
non-rigid motion in the lower face, the mouth stabilised images are computed by
rigidly tracking the eyes. We have extracted a region of the eyes with Neyes =
60 x 35 pixels and a region of the mouth with Ny,outn = 53 X 43 pixels (that
will be used both in tracking and re-animation). The normalised images of the
3D model (from the two training sequences) and the ground truth animation
parameters allows us to compute R:, for each of the face regions (upper and
lower face).

In the experiment conducted we use the projective motion model for appear-
ance based tracking. In order to compute the eigenspace matrix for tracking,
B, we use all the training normalised images. For computing the re-animation
matrix, R., we use the 540 and 629 example pairs (images and animation pa-
rameters) for eyes and mouth, respectively.

The jaw opening parameter (see figure 2 left) is estimated very accurately
except around the frame 830 in which the face is out of the frontal position
to the camera. The overall estimation of the pupil horizontal orientation (see
figure 2 middle and right) is quite good except in frames 222 to 435, in which
the face is not frontal to the camera, and around frame 1050, in which the model
is cross-eyed (and we don’t have such configuration in the examples).

Jaw openness Left pupil orientation Right pupil orientation

14 — ground truth 200 " ground ruth . 207 — ground truth 3
--- estimated --- estimated I3 --- estimated ,"
i S i &

200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
image image image

Fig. 2. Synthetic experiment results. 8 On the left, it is shown the estimated jaw
openness, in the middle the estimated horizontal rotation for the left pupil and on the
right the horizontal orientation of the right pupil.

4.2 Qualitative validation

We have tested our re-animation system with five different users. The main prob-
lem here is the selection of the examples for re-animation (the pairs normalised
images, animation parameters). The solution we have adopted is to use a set of
known face expressions in the 3D model (key frames) and select manually the
corresponding normalised images of the user’s eyes (21 examples) and mouth (18



examples). By doing so, we get the set of examples needed for the re-animation
training. We use all the training normalised images for computing the eigenspace
tracking matrices, B.

All the qualitative experiments were made by taking a very long sequence of
images and using half of the sequence for training and the other half for tracking.
In figure 3 are shown some of the results for two of the experiments. In the first
experiment we used a 4925 image sequence: 2190 images for training and 2735
for testing. And in the second one we used a 4421 images sequence: 2360 images
for training and 2061 images for testing. Due to lack of space we can not show
all the five re-animation experiments.

Fig. 3. Results of two of the qualitative experiments. In first row, appearance based
tracking results for first user (the two face areas locations are overlayed in white) and
in second row animation results. In third row, appearance based tracking results for
the second experiment and fourth row animation results.

5 Conclusions

In this paper we have shown one of the applications of facial analysis: perfor-
mance driven animation. The animation system presented can be adapted, by
training, to any user and illumination conditions and the current implementa-
tion of our appearance based tracker (not optimised) can track the upper part of



the face at 25 fps and the whole face at 15 fps. Given that the re-animation only
needs the multiplication of matrix R¢ by the grey levels of the corresponding
normalised image, it allows the animation of the 3D model in real time.

Some issues still remain open. The adaptation to a new user is in part manual,
mainly because we have not studied how to choose automatically the user images
that correspond to facial expressions in the 3D model. We are currently building
a robust tracker, which efficiently deal with occlusions and gross illumination
changes.
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