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Tracking heads using piecewise planar models
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Abstract. We present a procedure for tracking a rigid object based
on a piecewise planar model, and show how it can be used to track a
human face. The tracking is performed using a single incremental SSD-
based tracker. The main feature of the approach presented is that it can
track a rigid set of arbitrarily small patches all of which could not be
individually tracked.

1 Introduction

Three-dimensional head tracking is a basic component in many applications of
computer vision. For instance, the construction of advanced computer interfaces
deals with problems such as the identification of head gestures, face expression
analysis or lip reading. It is also used in biometric applications, like face or
iris-based recognition, for which a stable location of the face is critical. Also,
for very low bit-rate communications, the MPEG-4 standard proposes the use
of animated artificial face models in a wide range of applications from virtual
videoconferencing to virtual actors. All these applications require a robust and
efficient (i.e. real-time or near real-time) head tracker with no markers on it.

Various techniques have been proposed in the literature for head tracking.
Some of them only track the 2D position of the face on the image plane [2, 6],
others model the face as a plane, which can be affinely or projectively [7,3,4]
tracked in 3D space. Finally, there is a third group of procedures which rely on
a 3D model of the face. These are based on individually tracking a set of salient
points [11], 2D image patches [8,9,12], or 3D surface-based head models [10].

Procedures based on individually tracking a set of features can be quite
unstable as each feature, individually, may not provide enough information to
be tracked. In order to cope with this problem some higher level process, like
a Kalman filter [9,12] or a set motion restrictions propagated on a network of
features [8], are used to accumulate the information provided by the tracker of
each feature/patch in order to estimate the motion of the head. This problem
does not exist for methods which model the face with a single surface, but, on
the other hand, those based on a single-plane are not able to track the head
in presence of out-of-the-image plane rotations [7,3,4], whereas those which
are based on a more complex head model, for example a cylinder [10], need
computationally expensive warping algorithms.



In this paper we present a procedure for model-based head tracking. The
model is based on a set of image patches located in space with a known 3D
structure. Our approach differs from previous feature/patch-based trackers [8,
9,12] in that we track all features using a single incremental tracker [7,4]. In
this way we integrate in a single tracker the low level information provided
by all patches in the image, enabling us to reliably track a set of arbitrarily
small patches, all of which could not be individually tracked. In section 2 we
briefly introduce the incremental image alignment paradigm. In section 3 we
build the tracker. Finally in sections 4 and 5 some experiments are presented
and conclusions drawn.

2 Incremental image registration

Let x represent the location of a point in an image and I(x,t) represent the
brightness value of that location in the image acquired at time ¢. Let R =
{X1,%2,...,xn} be a set of N image points of the object to be tracked (target
region), whose brightness values are known in the first image of a sequence,
I(X7 t()) .

Assuming that the brightness constancy assumption holds, then

I(XatO) = I(f(X, ﬂt)vt) Vx € R, (1)

where I(f(x, i), t) is the image acquired at time ¢ rectified with motion model
f and motion parameters i = fi;.

Tracking the object means recovering the motion parameter vector of the
target region for each image in the sequence. This can be achieved by minimising
the difference between the template and the rectified pixels of the target region
for every image in the sequence

min I(£(x, 1), 1) = 1(x, o)) (2)

This minimisation problem has been traditionally solved linearly by computing
it incrementally while tracking. We can achieve this by making a Taylor series
expansion of (2) at (&, t) and computing the increment in the motion param-
eters between two time instants. Different solutions to this problem have been
proposed in the literature, depending on which term of equation (2) the Taylor
expansion is made on and how the motion parameters are updated [1].

If we update the model parameters of the first term in equation (2) using an
additive method, then the minimisation can be rewritten as [1, 5]

min [I(£(x, fi + 07i), t + 6t) — I(x,10)]%, (3)

where dfi represents the estimated increment in the motion parameters of the
target region between time instants ¢ and t + Jt.



The solution to this linear minimisation problem can be approximated by [5]

op=—Hg' > M(x,0) E(x,t + ), (4)
VXER

where Hj is
Ho = »  M(x,0) M(x,0),
VxeER
E(x,t + dt) is the error in the estimation of the motion of pixel x of the target
region
E(x,t+ot) = I(f(x, fir), t + 6t) — I(x,tp),
and M(x, 0) is the Jacobian vector of pixel x with respect to the model param-
eters i at time instant to (we will assume fiz, = 0). If f(x,0) = x, then M(x,0)
can be expressed as

M(X,O) — 8I(f(xv_ﬂ)’t0) — VXI(X,to)T |:af(x_a M):| ,

o =0 /R P

where ViI(x,tg) is the template image gradient and W is the Jacobian
vector of the motion model.

The Jacobian of pixel x with respect to the model parameters in the ref-
erence template, M(x,0), is a vector whose values are our a priori knowledge
about target structure, i.e. how the brightness value of each pixel in the ref-
erence template changes as the object moves infinitesimally. It represents the
information provided by each template pixel to the tracking process. Note that
when Hy = >, . M(x,0) TM(x, 0) is singular the motion parameters cannot
be recovered, this would be a generalisation of the so called aperture problem in

the estimation of optical flow.

— 0Offline computationms:
1. Compute and store M(x,0).
2. Compute and store Hj.
— On line computations:
Warp I(z,t+ 6t) to compute I(f(x,fit),t + dt).
Compute E(x,t + dt).
From (4) compute d.
Update fizt+st = fit + Ofi.
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Fig. 1. Outline of the incremental tracking algorithm

The on-line computation performed by this tracking procedure is quite small
(see Fig. 1) and consists of a warping of N pixels, which can be made very
fast by conventional software o even by specialised hardware, a subtraction of
N pixels to compute £(x,t + dt), the addition of N vectors multiplied by one
constant, and the multiplication of this result by the n x n matrix Ho ', where
n = dim(@).



3 The tracker

In this section we will introduce the target region motion model, f, and show
how to compute the image Jacobian M(x,0) with respect to the parameters of
the model.

3.1 Motion model
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Fig. 2. Geometrical set up of the tracking process.

Let {m;} be a set of N planar patches in 3D space, each one containing a target
region. Each patch, m;, of this set can be described by equation 7; = n/ P =1,
where n; = [a,b,c]" is a three-element vector containing the normal direction
to the plane 7;, and P = [X,Y, Z]T € m; are the coordinates of a 3D point on
that plane expressed in the reference system of the scene, Oxy . Each plane,
m;, will have a reference template or high-resolution image of the target region,
I?, associated to it. At the initial time instant, we will assume that the reference
systems attached to the camera and scene are perfectly aligned.

The projection of a point on a planar patch P, onto image I; of the sequence
is given by

x;’ =KR;[I-t;n] | Py, (5)

H;
where K is the camera intrinsics matrix, which is assumed to be known, I is the
3 x 3 identity matrix, R, t; represent the pose of the camera and x;° represents



the homogeneous coordinates of the pixel projection. As we are dealing with 3D
points that are located on planes, their projection model is a 2D linear projective
transformation or homography, H;.

The motion model, f(x, i), can be derived from (5) by considering the pro-
jection of 3D point P, onto Iy = I(xo, o) and onto I; = I(xy,t)

x;’ = KR, [I—t;n] | K 'x(’,

where, Ry (o, 8,7) and t(t,, t,, t.) are the six parameters, i = (o, 8,7, tz, ty, t2) |,
of the motion model, which represent the pose of the camera with respect the
first image in the sequence. Note that, since our scene is rigid, these motion
parameters are common to all patches 7; in the model.

3.2 The image Jacobian

In this subsection we will show how to compute the second element of our algo-
rithm, M(x, 0).

Due to partial occlusions, perspective effects or low resolution, the projection
of a target region onto Iy may not provide enough information to accurately
compute VI (X,tp). In this case we use the reference template to compute it,
through the following relation

afi%g,unr {agiézm] |

vx[(x7 t0)|Vx€7ri = |:

where g; is the warping function that transforms the projection of planar patch
m; in image I onto reference template I?, that is, Ip(x) = I1(gi(x, &) Vx € ;.
Finally, the Jacobian of the motion model with respect to the motion param-

eters is given by
of(x, )

O

da oL (6)

_ [6f(x7u) of (x, u)} ’

=0

where, for example
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4 Experiments

We have carried out three experiments to test the tracking algorithm here pre-
sented, for each of which we have generated an image sequence (See videos at
http://www.dia.fi.upm.es/ Ibaumela/FaceExpressionRecognition /research.html).
Sequences A and B were generated using pov-ray! (see Fig 3 and 4), in order to

LA free ray tracer software, http://www.povray.org



have ground truth data of the motion of our target. Sequence C (see Fig. 5) was
captured with a Sony VL-500 CCD colour camera with no gain and no gamma
correction.

In the first experiment we test the accuracy of our tracker. For this test
we have used sequence A (see Fig. 3), in which a cube located 4 meters away
from the camera translates along the X axis (¢, varies) and rotates around the
Z axis (v varies). As can be seen in Fig. 3 the parameters estimated with our
tracker coincide with the ground truth data. Note that as we are generating the
sequences with synthetic ligths and we are warping the textures over the planar
patches (with aliasing effects involved), the sequences are not noise free.
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Fig. 3. Sequence A. First row: images 1, 100, 200 and 300 of the sequence. In white thick
lines is shown the motion estimated by our tracker. Second and third rows: tracking
parameters for sequence A. In solid line is shown the ground truth data and in dash-dot
line is shown the motion estimated by the tracker.

The second experiment compares the tracking procedure presented in this
paper with a traditional patch-based tracker in which each of the patches is
tracked individually. For this test we have generated sequence B (see Fig. 4)
which is identical to sequence A except that now the moving object is composed
of two planar patches with textures which individually do not provide enough
information for tracking. As shown in Fig. 4 the individual tracker diverges after
a few frames. This is caused by the ambiguity of the textures in the patches.

In the last experiment we test the performance of our tracker when following
a human face. For this test we use sequence C. As shown in Fig. 5, the tracker
accurately tracks the face even for moderate out-of-the-image plane rotations.
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Fig. 4. Sequence B. First row: images 1, 100, 200 and 300 of the sequence. In white thick
lines is shown the motion estimated by our tracker. Second and third rows: tracking
parameters for the first 100 frames in sequence B. In solid line is shown the ground
truth data, with dashed line is shown the estimation of the individual tracker, finally
with dash-dot line is shown the motion estimated by our tracker.

These rotations could be even larger just by including patches taken from the
sides of the head.

5 Conclusions

We have presented a procedure for tracking a rigid object based on a set of
image patches. By integrating low level information in a single tracker we have
been able to reliably track in 3D a set of patches which individually could not
provide enough information. With this algorithm we could also track a face with
out-of-the-image plane rotations, even with a poor face model.

Another issue that should be addressed in the future is the speed of conver-
gence of the tracker. This is related to the approximation made to solve (3) and
to the dependencies (correlations) in the columns of the Hg matrix, which are,
in turn, directly related to the ambiguities in the estimation of the tracking pa-
rameters and which may result in slow convergence, and eventually divergence,
of the tracker. Other open issues are the invariance to illumination changes and
to variation in the texture of the patches (e.g. variations in face appearance).
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Fig. 5. Sequence C. Upper row: four images of the sequence. In white thick lines is
shown the location of each feature estimated by the tracker. Bottom row: Estimated
rotation parameters.
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