
Real-Time Facial Expression Recognition with Illumination-Corrected Image

Sequences

He Li
Dep. Comp. Sci. and Engr.
Fudan University, China
demonstrate@163.com
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Abstract

We present a real-time user-independent computer vision

system that processes a sequence of images of a front-facing

human face and recognises a set of facial expressions at 30

fps. We track the face using an efficient appearance-based

face tracker. We model changes in illumination with a user-

independent appearance-based model. In our approach to

facial expression classification, the image of a face is rep-

resented by a low dimensional vector that results from pro-

jecting the illumination corrected image onto a low dimen-

sional expression manifold. In the experiments conducted

we show that the system is able to recognise facial expres-

sions in image sequences with large facial motion and illu-

mination changes.

1. Introduction

Facial expression classification and recognition is a topic

of interest within the Computer Vision community, mainly,

because of its applications in the construction of advanced

human-computer interaction systems. The problem of facial

expression recognition can be divided into three subprob-

lems: face detection, discriminative information extraction

and expression classification. Once the position of the face

in an image has been estimated, it is analysed to extract dis-

criminative information that will be used to classify the fa-

cial expression. Different facial expression recognition al-

gorithms have been introduced in the literature depending

on the discriminative information extracted from the image

and the classification procedure used [6, 11].

Regarding to facial expressions there is evidence to sup-

port the existence of six primary emotions, which are uni-

versal across cultures and human ethnicities [5]. Each emo-

tion possesses a distinctive prototypic facial expression.

These basic emotions are joy (jo), surprise (su), anger (an),

sadness (sa), fear (fe) and disgust (di). Recognising all or

a subset of these prototypic facial expressions from images

has been a topic of research in computer vision and pattern

recognition for the last decade (e.g. [4, 10, 12, 13, 16]).

In this paper we consider all three facial expression

recognition subproblems. Our solution represents a good

compromise between user and illumination independence,

real-time performance and classification error. Our sys-

tem tracks, in real-time, the rigid motion of a front-facing

human face while dealing with illumination changes. We

adopt a model-based procedure for tracking. In our ap-

proach the appearance of a face is represented by a linear

subspace of illumination computed in a user independent

way. We fit the user independent appearance model to an

incoming image by using the algorithm of Buenaposada et

al [2] an efficient and robust fitting algorithm.

We also adopt a model-based approach for facial expres-

sion recognition. By tracking a set of 322 image sequences

of 92 subjects from the Cohn-Kanade data base [8], we

build a user-and-illumination-independent global represen-

tation of all facial expressions. In this model, a face image

is represented with a point in an n-dimensional space of

deformations, where n is the number of face model param-

eters. The variability of the classes of images associated to

the prototypic facial expressions are represented by a set of

samples that model a low-dimensional manifold embedded

in the n-dimensional space of deformations. Images repre-

senting similar expressions are mapped to nearby points on

the manifold. We use a probabilistic procedure [3] to com-

bine the information provided by the image sequence with

the information represented in the manifold to estimate a

posterior probability for each facial expression.

Our solution differs from previous related approaches [4,

13] in various ways: a) our manifolds are user independent,

while those introduced in [4] depend on the identity of the

user; b) we use illumination corrected images (with a user-

independent illumination model) as discriminative informa-

tion for expression classification, whereas Active Wavelet

Networks [7] and Local Binary Pattern features [9] were

used respectively in [4] and [13]. This paper is also di-

rectly related to previous work of the authors [3]. The main
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differences are: a) the face appearance model used in [3]

is user dependent, whereas here we use a generic average

model; b) facial expression classification features in [3] are

the deformation appearance subspace coefficients, while in

this paper we use the illumination corrected images. These

changes basically provide a higher degree of subject inde-

pendence. The new system is closed, in the sense that it

must not be retrained for a new user.

2. Face alignment

In this section we describe the face alignment used in our

facial expression recognition algorithm. The face is initially

located using a face detection algorithm. We use the well

known Viola-Jones procedure [15]. Face detection algo-

rithms provide a rough estimate of the location and scale of

the face which does not suffice for facial expression recog-

nition. We use then an efficient model-based face alignment

procedure to accurately locate the face and compensate il-

lumination effects.

2.1. The face model

Wewill assume that faces are in frontal view. In this case

changes in the appearance of a face are caused by identity

and illumination variations. We build a user-independent

model of illumination by registering sample faces from dif-

ferent individuals under different illumination conditions.

In our experiments we show that this model suffices to track

different people and recognise their facial expressions with

a high degree of robustness with respect to illumination

changes.

Let I(x, t) be the image acquired at time t, where x is a

vector representing the co-ordinates of a point in the image,

and let I(x, t) be a vector storing the brightness values of

I(x, t). The first order approximation to the grey value of

pixel x can be expressed as Ī(x) + [Bct](x), where B is the

basis of the illumination subspace, vector c is the illumina-

tion appearance parameters and Ī(x) is the average image.

The rigid motion of the face is modelled by f(x,µ), be-
ing µ the vector of rigid motion parameters. So, the bright-

ness constancy equation is

I(f(x,µt), t) = Ī(x) + [Bct](x) ∀x ∈ F , (1)

where k = dim(ct), and F represents the set of pixels of

the face used for alignment.

We train a generic facial appearance model with the PIE

database [14]. Here, each illumination is averaged across

all identities. The result is an average image for each illu-

mination direction (see Fig. 1) that will be used for build-

ing the illumination subspace. Matrix B is estimated by

selecting the nine1 directions with highest variance of the

1Nine components suffice to represent 97% of the energy in the image

[1].

eigenspace spanning the set of frontal averaged images of

the PIE database (see Fig. 2). We also add a vector of ones

to account for global brightness changes.

Figure 1. Aligned images used to build the illumination subspace

(61 by 72 pixels each).

Figure 2. Mean of illumination training images (first image on the

left). Illumination subspace basis vectors (remaining images).

2.2. Model fitting

We fit the previous model to a target image by estimating

the motion, µ, and appearance, c, parameters which min-

imiseE(µ, c) = ||I(f(x,µt), t)−Ī−[Bct](x)||2. These pa-
rameters may be estimated in real-time with Buenaposada

et al’s fitting algorithm [2]. We make a Taylor series expan-

sion of I at (µt, ct, t), producing a new error function

E(δµ, δc) = ||Mδµ+I(f(x,µt), t+δt)− Ī−B(ct+δc)||2,
(2)

where M =

[

∂I(f(x,µ),t)
∂µ

∣

∣

∣

µ=µ
t

]

is the N×n (n = dim(µ))

Jacobian matrix of I, where N is the number of pixels in

appearance model. An efficient solution for estimating the

minimum of (2) is given by

δµ = −(Σ⊤ΛM1Σ)
−1

Σ
⊤
ΛM2E ; δc = ΛB [Mδµ + E ],

(3)

where ΛB (the B matrix pseudo-inverse), ΛM1 and ΛM2 are

constant matrices that can be precomputed off-line and Σ is

a matrix that depends on µt and ct [2].

In the experiments conducted we use a RTS (rotation,

translation and scale) motion model, so µ = (tu, tv, θ, s),
and f(x,µ) = sR(θ)x + t, where x = (u, v)⊤, t =
(tu, tv)⊤ and R(θ) is a 2D rotation. Therefore ΛM1 is a

4(k + 1) × 4(k + 1) matrix and ΛM2 is an 4(k + 1) × N
(N = 61 × 72 in our experiments).

3. Facial Expression Recognition

The classification procedure used for facial expression

recognition is based on a user-and-illumination-indepen-

dent facial expression model. This model is built by track-

ing a set of sequences from the Cohn-Kanade data base [8].

The last image in each sequence is labelled with the FACS

Action Units (AUs) that describe the expression. There is



no direct translation from AUs into one of the universal ex-

pressions (most of the time the translation is subjective). We

have manually translated these AUs into one of the six pro-

totypic expressions. To construct our manifold, we selected

only the 322 sequences of 92 subjects for which the pro-

totypic expression could be clearly identified2. In the next

two subsections we explain the features and the classifier

used in our experiments.

3.1. Dimensionality Reduction

We used the tracker introduced in section 2 to process the

sequences from the Cohn-Kanade data base. Once motion

and illumination parameters have been estimated, we can

compute an illumination normalised version of the rectified

image, I(f(x,µt), t) − Bct (see Fig. 3).

Figure 3. Illumination rectified images. The first row displays the

original cropped images. The second row displays the correspond-

ing illumination rectified ones.

The dimension of the illumination normalised images is

quite high compared with the amount of data available for

training (in the experiments conducted in section 4 this di-

mension is 61x72). To avoid the curse of dimensionality we

use a dimensionality reduction procedure. We further pro-

cess the set of Cohn-Kanade illumination corrected images

by making PCA (we retain 90 eigenvectors) and then LDA.

As we have 6 face expressions, we get a 5 dimensional sub-

space. We are going to call this dimensionality reduction

procedure PCA+LDA.

Only six expressions (surprise, fear, joy, sadness, disgust

and anger) will be identified. The neutral expressions can

be regarded as the case when the system shows no favour

for any of the 6 known expressions. Since the information

associated to the appearance of the facial expression is rep-

resented by the LDA parameters, f , the expression in the

sequence of images I1, . . . , Im can be identified as a tra-

jectory, f t, t = 1 . . . m in the expressions subspace. Tra-

jectories associated to the same prototypic facial expression

represent roughly similar facial deformations and, conse-

quently, will be located in nearby positions in the defor-

mation subspace. Conversely, the trajectories of different

expressions will be located in different positions in the sub-

space (see Fig. 4).

Our model of a prototypic facial expression is the man-

ifold that contains the set of trajectories of that expression

in the data base. Since all expressions are defined in the

2http://www.dia.fi.upm.es/∼pcr/downloads.html

Figure 4. Trajectories of two prototypic facial expressions (joy and

surprise) for two different subjects in the subspace spanned by the

two directions of PCA+LDA subspace with the largest variance.

common linear space spanned by the PCA+LDA subspace

vectors, our facial expression model is the union of the six

manifolds associated to each prototypic facial expression

(see Fig. 5). In our model we only introduce the last 6 im-

ages of each training sequence, since the first images of all

sequences contain the neutral expression.
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Figure 5. Manifold of facial expressions (we show only the three

directions of the subspace with the largest variance).

3.2. Sequential Classification

We use the the probabilistic facial expression recognition

procedure introduced in [3] but changing the features used

by the ones described on section 5. It combines the prior

information stored in the expression manifold with the in-

coming data obtained from a temporally ordered sequence

of images of a face.

Let I1, . . . , It be a temporally ordered image sequence

of a face wearing one or more facial expressions and

f1, . . . , f t be the temporally ordered set of co-ordinates of

the image sequence in the facial expression subspace, which

we will denoteF1:t. LetGt = {g1, g2, . . . , gc} be a discrete
random variable representing the facial expression at time t
and Ft be a continuous random variable associated to the

co-ordinates in the facial expression subspace (PCA+LDA



subspace) of the image acquired at time t. We will denote

by P (gi) ≡ P (Gt = gi) the probability that the discrete

random variable Gt takes value gi and by p(f) ≡ p(Ft = f)
the probability density function (p.d.f.) of the continuous

variable f at time t.
The facial expression g(t) at time instant t is obtained as

the maximum of the posterior distribution of Gt given the

sequence of images up to time t

g(t) = argmax
i

{P (Gt = gi|F1:t)}.

Alternatively, the facial expression may also be described as

a probabilistic blending of the c primary facial expressions.

We will estimate the posterior distribution using a recur-

sive Bayesian filter. For the first image in the sequence

the problem can be immediately solved by P (G1|f1) ∝
p(f1|G1)P (G1). Now, if we have a temporal sequence of

images F1:t, and assume that measurements depend only

on the current state and that our system is Markovian, then

P (Gt|F1:t) ∝ p(Ft|Gt)P (Gt|F1:t−1), where

P (Gt|F1:t−1) =

c
∑

i=1

P (Gt|Gt−1 = gi)P (Gt−1 = gi|F1:t−1),

(4)

and P (Gt|Gt−1) is the expression transition probability.

In contrast to previous approaches (e.g. [4, 13]), which

try to estimate the probability of transition between two fa-

cial expressions, we believe that all expression transitions

are equally probable and use the following definition

P (Gt = gj |Gt−1 = gi) =

{

h if j = i
1−h
c−1 if j 6= i,

(5)

where 0 ≤ h ≤ 1 is a smoothing parameter that con-

trols how Gt−1 influences the predictions about Gt. In our

recognition system the parameter h acts as a forgetting fac-

tor. The closer h is to 1, the less we forget about the infor-

mation provided by all previous images in the sequence. In

extreme cases, when h = 1, all images in the sequence are

taken into account, and when h = 1
c
, the recognition is per-

formed exclusively on the basis of the last image acquired.

3.3. Estimating p(F |G)

The p.d.f of an image Iwith face expression co-ordinates

f when subject is wearing facial expression gi is denoted by

p(f |gi). Our goal here is to estimate this p.d.f. from the data

in the facial expression manifold computed in section 3.1.

We will use a k-nearest neighbour approach. Let k be the

number of elements in the nearest neighbour set of f , ki(f)
the number of elements in the nearest neighbour set that

belong to facial expression gi (k =
∑c

i=1 ki(f)) and ni the

number of samples in the manifold of facial expression gi.

Then

p(f |gi) =
kr

i (f)

niV(k)
∝

kr
i (f)

ni

,

where V(k) is the volume of the neighbourhood enclosing

the k nearest neighbours and

kr
i (f) =

{

η if ki(f) = 0,
ki(f) otherwise,

is the regularised the number of elements in the nearest

neighbour set that belong to facial expression gi (k =
∑c

i=1 kr
i (f)). Parameter 0 ≤ η ≤ 1 models the amount

of regularisation introduced for a facial expression with no

neighbour. We use this regularised nearest-neighbour defi-

nition to avoid the the so-called veto effect3.

4. Experiments

In this section we are going to explain the experiments

carried out using the 322 selected sequences from the Cohn-

Kanade database.

4.1. Quantitative evaluation

In each cross validation fold the sequences from one sub-

ject are tested against the model trained with all sequences

from other subjects. We believe that this strategy, leave-

one-subject-out, is better, to test for classifier generalisation

ability, than the conventional k-fold cross validation, leave-
one-sequence-out. Because in the leave-one-sequence-out

scheme we still train the classifier using the remaining se-

quences for the same subject the information of the testing

sequences is partially contained in the model.
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Figure 6. Recognition error curves for different classifier parame-

ters.

The classifier described in section 3 has three parame-

ters: smoothing parameter h, neighbourhood size k and η
to avoid the veto effect. In the experiments, η is manu-

ally set to 0.3. We used an exhaustive a search procedure

to select the best h in {1/6, 0.2, 0.4, 0.6, 0.8, 1} and k in

3If there is a single image in the sequence, Ir , such that ki(fr) = 0,
then P (gi|F1:t) = 0, no matter what the values of this probability for all

preceding time instants were.



{1, 3, 5, . . . , 59}. Figure 6 shows the impact on the recogni-

tion of different classifier parameters. The upper-left panel

shows the 3D view of errors w.r.t. k and h. The upper-right
and lower-left panels display plots of errors v.s. h and k re-

spectively. The gray level of points in the plot represents the

impact on the errors from variation of the other parameter.

The best parameter configuration, h = 0.2, k = 31, yields
a recognition rate of 86.025% (see table 1).

su fe jo sa di an total

su 100.00 0.00 0.00 0.00 0.00 0.00
fe 0.00 80.00 7.87 6.12 6.52 3.03
jo 0.00 5.71 87.64 2.04 0.00 3.03
sa 0.00 8.57 1.12 79.59 8.70 9.09
di 0.00 0.00 0.00 6.12 78.26 6.06
an 0.00 5.71 3.37 6.12 6.52 78.79

total 86.025

Table 1. Confusion matrix (expressed in percentage) for h = 0.2

and k = 31.

Figure 7. Example of expressions classification.

Figure 7 shows an example of the evolution of expression

probabilities in an image sequence. In the first five frames,

since the face is neural, all facial expressions have a similar

probability. As the expression evolves towards the apex, the

probability of surprise grows closer to one.

4.2. Qualitative evaluation

In this section we analyse the performance of our system

in a realistic image sequence (see Fig. 8) of a face moving

and performing several facial expressions. In this case we

have augmented the number of expressions with the neutral

one. We have selected the classifier parameters h = 0.6 and

k = 39, which produce the best classification results on the

Cohn-Kanade database for seven expressions (including the

neutral one).

The sequence starts with a neutral face until frame 57 in

which we have a correctly detected surprise expression (see

Fig. 9) that finishes at frame 73. The tracker is re-started by

the face detector (the blue rectangles in Fig. 8) whenever it

detects a tracking failure (corresponding to a too high or too

low value for equation (2)). This normally occurs during a

very fast motion or an out of camera plane head rotation.

There is another surprise expression from frame 80 to 87

that is also correctly detected. In frames 95 to 117 the user

performs a fear expression that is also properly recognised.

In frames 123 to 138 a fear-like expression is performed, but

it is estimated as a surprise. This is due to the eyebrows not

being frown and the mouth not displaying the exact shape

of the fear expressions in the Cohn-Kanade database. A

correctly detected smile is performed between frames 168

and 227. Between frames 272 and 277 the face is looking

up, the lips are contracted, and illumination is uneven. This

is the reason of getting a wrong anger expression estima-

tion. In the interval of frames from 307 to 345 a disgust

expression is performed. Only from frame 326 the disgust

probability is greater than the neutral probability because

of the mouth taking a shape closer to the training disgust

expressions. One of the difficult expressions to recognise

is sadness, because in our PCA+LDA space it is very close

to anger. From frame 449 to 557 the user performs a sad

expression that is either confused with the anger expression

or not estimated at all. From frame 565 to 630 there are

three surprise expressions all of them correctly identified.

Finally, between frames 643 and 672, there is a fear-like

expression which was not performed exactly as the training

ones. It was consequently estimated as a mixture of surprise

and fear.

5. Conclusions

In this paper we have presented a system that is able to

track a face and classify the facial expression in real-time.

The models used both in tracking and in classification are

user independent. Our recogniser can be reconfigured, in

the sense that it can be used to recognise any other set of

expressions just by changing the training data.

It achieves an 86% recognition success on a set of 322

sequences from the Cohn-Kanade data base. Although our

results are not as good as the best reported so far for this data

base [16] (96%), we have a complete system which detects,

tracks and recognises a facial expression in real-time.

Our system has several shortcomings that we are cur-

rently trying to solve. First, user and illumination indepen-

dence is achieved by using as model an average face. The

performance of our system degrades as the appearance of

the user departs from the average face. We are currently

considering the possibility of simultaneously reconstruct-

ing the appearance of the user and recognising the facial

expression.

Also, our solution, like most previously introduced [4,

13, 16], follows a holistic approach. It uses information

extracted from the whole face to classify the expression.

This means that, to correctly recognise an expression, the

combination of facial movements in all parts of the user’s

face must match those in the data base. Since all samples

in the Cohn-Kanade data base follow quite a strict expres-

sion layout, the performance of the system apparently de-

grades when it is used by untrained users. So, future re-
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Figure 8. Tracking results for a realistic video.
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Figure 9. Classification results for a realistic video.

search venues must consider tracking and recognising facial

expressions using motion data extracted from local face de-

formations.

Acknowledgements
He Li was funded by NSFC 60635030, 863 Project

(2007AA01Z176) and Universidad Politécnica de Madrid.
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