
To appear in European Conference on Computer Vision, April 1996.

Direct methods for self-calibration

of a moving stereo head

M.J. Brooks1;3 L. de Agapito2 D.Q. Huynh1 L. Baumela3

1 Centre for Sensor Signal and Information Processing, Signal Processing Research
Institute, Technology Park, Adelaide, SA 5095, Australia

2 Instituto de Autom�atica Industrial, CSIC, La Poveda, Madrid 28500, Spain
3 Departamento de Inteligencia Arti�cial, Facultad de Inform�atica, Universidad

Polit�ecnica de Madrid, 28660 Boadilla del Monte, Spain

Email correspondence: mjb@cs.adelaide.edu.au

Abstract. We consider the self-calibration problem in the special con-
text of a stereo head, where the two cameras are arranged on a lateral
rig with coplanar optical axes, each camera being free to vary its angle
of vergence. Under various constraints, we derive explicit forms for the
epipolar equation, and show that a static stereo head constitutes a degen-
erate camera con�guration for carrying out self-calibration in the sense
of Hartley [4]. The situation is retrieved by consideration of a special
kind of motion of the stereo head in which the baseline remains con�ned
to a plane. New closed-form solutions for self-calibration are thereby ob-
tained, inspired by an earlier discrete motion analysis of Zhang et al. [11].
Key factors in our approach are the development of explicit, analytical
forms of the fundamental matrix, and the use of the vergence angles in
the parameterisation of the problem.

Keywords: Self-calibration, stereo head, degeneracy, epipolar equation, funda-
mental matrix, ego-motion.

1 Introduction

The simultaneous recovery of intrinsic and extrinsic parameter values from both
static and dynamic imagery has in recent times attracted considerable attention
(see [2], [3], [4], [7], [8], [9], [10], [11], [12], [13]). In this paper, we consider this
self-calibration problem in the special context of a stereo head, perhaps the most
commonly adopted binocular camera con�guration in robotics. First, however,
we recall the epipolar geometry which underpins the analysis.

We adopt a notation similar, but not identical, to that of Faugeras et al. [3];
see the Appendix for a summary of the di�erences. Let m and m0 denote cor-
responding points, in homogeneous coordinates, in the left and right images,
respectively. We may express the epipolar equation as

mTFm0 = 0; (1)



where F is the fundamental matrix [3, 6], de�ned as

F = AT TRA0: (2)

Here, R embodies the pure rotation that renders the left image parallel with
the right image, T is a skew-symmetric matrix formed from the baseline vector
connecting the left and right optical centres, and A and A0 are the intrinsic
parameter matrices of the left and right cameras. (Note again the use in equations
(1) and (2) of non-standard, but convenient, de�nitions of the various matrices.
See the Appendix.)

As is well known, no more than 7 imaging parameters may be recovered
from the epipolar equation, due to the special properties of the fundamental
matrix [3]. In particular, Hartley [4] and Pan et al. [8] have shown that, under
favourable conditions, two focal lengths and 5 relative orientation parameters
may be recovered by a process of self-calibration.

In the next section, we consider the special situation in which two cameras
form a stereo head assembly. We show that, in the absence of motion, this
commonly adopted con�guration is degenerate in that self-calibration may no
longer be carried out in the sense of Hartley [4]. Direct methods of self-calibration
are then explored in the context of a moving stereo head. Note that an extended
version of this work appears in [1].

2 Stereo head assembly

Consider the special case of a stereo head in which a pair of cameras is mounted
on a lateral rig. The cameras are free to vary their angles of vergence. The y-
axes of the two images are parallel, and are orthogonal to the baseline vector, as
depicted in Figure 1. The optical axes and the baseline are therefore coplanar.
The matrices R, T and A now take the forms

R =

0
@cos� 0 � sin�

0 1 0
sin� 0 cos�

1
A; T =

0
@ 0 �tz 0
tz 0 �tx
0 tx 0

1
A ; A =

0
@1 0 �u0
0 1 �v0
0 0 �f

1
A :

Here, � is the angular rotation about the y-axis that renders the left image par-
allel with the right image; T is formed out of the baseline vector t = (tx; 0; tz)

T ;
and, for each camera, the focal length and the principal point are the only un-
known intrinsic parameters, denoted by f and (u0; v0), with the image coordinate
system axes assumed to be orthogonal and similarly scaled.

In view of (2), the fundamental matrix is now given by

F =

0
@ 0 �tz tzv

0

0

� 0 �u00�� f 0�
�v0� u0tz � ftx u0

0
v0�+ v0

0
(ftx � u0tz) + f 0v0�

1
A ; (3)

where � = tz cos� � tx sin�, and � = �tx cos� � tz sin�.
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Fig. 1. Stereo head con�guration.

As is well known, absolute dimensions of depth cannot be determined solely
from knowledge of corresponding points and the associated fundamental matrix.
Accordingly, without loss of generality, we set the baseline length to unity, and
note that the direction of the baseline vector is now e�ectively described by
1 parameter. There are therefore 8 unknowns encoded within F, these being
�; u0; v0; f; u

0

0
; v0

0
; f 0 and either tx or tz.

2.1 Vergence-angle parameterisation

The form of F is simpli�ed if an adjustment is made to the parameterisation by
incorporating the left and right vergence angles �1 and �2, where

tx = cos�1; tz = sin�1; � = �1 + �2: (4)

Here, �1 and �2 specify the extent to which the left and right optical axes point
inwards from the direction `straight-ahead'. (Note, therefore, that the left and
right vergence angles are measured in an opposite sense. See Figure 2.) Relative
orientation in this situation is now determined by the pair �1; �2, instead of �; tx.
Equation (3) is then expressed as

F =

0
BBBBBB@

0 � sin�1 v00 sin�1

� sin�2 0 (u0
0
sin�2 + f 0 cos�2)

v0 sin�2 (u0 sin�1 � f cos�1)
�v0(u

0

0
sin�2 + f 0 cos�2)

�v0
0
(u0 sin�1 � f cos�1)

1
CCCCCCA
; (5)

in which the 8 unknowns are �1; �2; u0; v0; f; u
0

0
; v0

0
; f 0:
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Fig. 2. Plan view of stereo head showing vergence angles.

In the event that su�ciently-many corresponding points can be located in
the two images, it may be possible to obtain a numerical estimate, Fest, of the
matrix F. Let

Fest =

0
@�1 �2 �3
�4 �5 �6
�7 �8 �9

1
A : (6)

Noting that Fest may only be determined up to a scale factor, we may form the
equation

F = �Fest: (7)

Here, the unknown � aligns the scales of the two matrices. We can now ob-
tain 7 equations by linking respective elements of the matrices. However, these
equations are not all independent, since F33 = F23F31=F21 + F32F13=F12. Thus
we may obtain up to 6 independent equations, one of which will be utilised in
eliminating �. We therefore observe that, of the 8 unknowns encoded within
F, at most 5 may be determined provided the remaining 3 are known. Further
constraints are therefore needed if we are to solve for the various parameters.

3 Self-calibration of a static stereo head

We now consider how (7) may be solved under additional assumptions. In doing
so, we shall gain insight into the feasibility of self-calibration of a static rig. Our
aim is to develop closed-form expressions for the various parameters.

Case 1: u0; v0; u
0

0
; v0

0
known

If the locations of the principal points are known, we may without loss of general-
ity o�set the coordinates of image points. This simple form of image recti�cation
then permits the setting of u0 = v0 = u0

0
= v0

0
= 0 in (7), giving

F =

0
@ 0 � sin�1 0
� sin�2 0 f 0 cos�2

0 �f cos�1 0

1
A = �

0
@ 0 �2 0
�4 0 �6
0 �8 0

1
A : (8)



This case is relevant either to a pair of static stereo cameras having independent,
unknown focal lengths, or to a single mobile camera in which the focal length
may be varied. We now have 5 unknown parameters, including �, but are able
to generate only 4 independent equations. Thus, whereas in general we may
obtain via self-calibration 2 focal lengths and 5 relative orientation parameters,
we are unable to �x any of the unknown parameters in this special situation.
The camera con�guration is therefore degenerate for Hartley self-calibration.

Case 2: u0; v0; u
0

0
; v0

0
known; f = f 0

Here we assume that the left and right focal lengths are equal, and seek only the
3 unknown parameters f; �1; �2. Equation (7) now reduces to

F =

0
@ 0 � sin�1 0
� sin�2 0 f cos�2

0 �f cos�1 0

1
A = �

0
@ 0 �2 0
�4 0 �6
0 �8 0

1
A ; (9)

yielding 4 independent equations. All 3 imaging parameters can now be deter-
mined, viz:

f =
q
(�2

8
� �2

6
)=(�2

4
� �2

2
); tan�1 = f �2=�8; tan�2 = �f �4=�6: (10)

Note here that f is computed in the same units as the coordinates of the corre-
sponding points used to estimate the fundamental matrix.

Case 3: u0; v0; u
0

0
; v0

0
known; �1 = �2 = �=2

We now seek to determine �, f and f 0, given the very special situation in which
the vergence angles are equal, with the principal axes of the cameras and the
baseline forming an isosceles triangle. Our equation is now

F =

0
@ 0 � sin�=2 0
� sin�=2 0 f 0 cos�=2

0 �f cos�=2 0

1
A = �

0
@ 0 �2 0
�4 0 �6
0 �8 0

1
A : (11)

Noting that F12 = F21, we see that none of the unknown parameters may be
determined without more information being provided. Remarkably, if the focal
lengths are known to be equal, it remains impossible to recover any of the pa-
rameters. Note, however, that the ratio of the focal lengths may be determined.

Case 4: (u0; v0; f) = (u0
0
; v0

0
; f 0)

Here we assume left and right cameras have identical focal length and principal
point locations. This also corresponds to a mobile camera moving horizontally.
The 5 parameters �1; �2; u0; v0; f are now free, (7) reducing to:0

BBBBBB@

0 � sin�1 v0 sin�1

� sin�2 0 u0 sin�2 + f cos�2

v0 sin�2
u0 sin�1
�f cos�1

�u0v0(sin�1 + sin�2)
+v0f(cos�1 � cos�2)

1
CCCCCCA

= �

0
@ 0 �2 �3
�4 0 �6
�7 �8 �9

1
A : (12)



Note that F31 = F21F13=F12 and F33 = (F23 + F32)F13=F12, and so only 5
independent equations may be generated. Given the need to eliminate �, at most
4 of the 5 parameters may be determined, provided the remaining parameter is
known.

Further discussion of self-calibration and the e�ect of either the tilting or
rotation about the optical axis of one camera is to be found in [1].

4 Self-calibration of a horizontally moving stereo head

Having seen that a static stereo head, with coplanar optical axes, is a degenerate
con�guration for self-calibration, we now assess the consequences of moving the
head. Speci�cally, we permit:

{ motion of the head such that the optical axes of the cameras are con�ned
to a plane. This therefore captures the situation in which an upright robot
head may translate or rotate in the horizontal plane.

{ independent vergence angles of the head that may vary with the motion.
{ each camera to have an unknown but �xed focal length.

The following analysis adopts a technique of Zhang et al. [12] in which various
fundamental matrices are utilised.

4.1 Formulating the fundamental matrices

Let the rig move from an initial position to a �nal position. Let the left-right pair
of images in the initial position be termed I1 and I2, and let the left-right images
in the �nal position be termed I3 and I4 (see Figure 3). The left camera is thus
responsible for the successive images I1 and I3. Assume that the determining of
corresponding points has led to estimates for the fundamental matrices linking
the following image pairs: (I1; I2), (I3; I4), (I1; I3), (I2; I4). Let the associated
analytical fundamental matrices be termed F12, F34, F13, F24. We shall not
here make use of F14 and F23. As before, we aim to solve for the parameters
embedded within these matrices by exploiting the fact that the analytical and
the estimated forms of the fundamental matrix are directly proportional. Note
that, in this regard, the approach pursued in Zhang et al. [12] is quite di�erent
in that a least-squares approach is used to solve a more general problem in
which motion is not con�ned to the plane (although, unlike here, the relative
orientation of the head is assumed �xed).

Recalling (8), the initial position of the rig gives rise to the fundamental
matrix, F12, given by

F12 =

0
@ 0 � sin�12

1
0

� sin�12
2

0 f 0 cos�12
2

0 �f cos�121 0

1
A : (13)

Assuming that the focal lengths of the respective cameras remain �xed, and that
the vergence angles are free to shift, we obtain the following fundamental matrix,
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Fig. 3. Motion of the stereo head.

F34, capturing the epipolar relationship between the left and right images of the
rig in its �nal position:

F34 =

0
@ 0 � sin�34

1
0

� sin�342 0 f 0 cos�342
0 �f cos�34

1
0

1
A : (14)

Similarly, the fundamental matrix relating the image pair (I1; I3) is given by

F13 =

0
@ 0 � sin�13

1
0

� sin�132 0 f cos�132
0 �f cos�13

1
0

1
A ; (15)

with the fundamental matrix for the image pair (I2; I4) being

F24 =

0
@ 0 � sin�24

1
0

� sin�24
2

0 f 0 cos�24
2

0 �f 0 cos�241 0

1
A : (16)

Here we note that the focal lengths of the respective cameras remain unchanged
in the movement of the rig from its initial to �nal position. We observe that,
under the above parameterisation, image I1 undergoes a rotation of (�13

1
+�13

2
),

relative to its own local coordinate system, in becoming oriented in parallel with
image I3.



4.2 Solving the fundamental matrix equations

It is now necessary to further enhance our notation so as to be able to deal
simultaneously with various fundamental matrices. Let the numerical estimate,
F
ij
est, of fundamental matrix Fij be represented as

F
ij
est =

0
@�ij

1
�ij
2
�ij
3

�ij
4
�ij
5
�ij
6

�ij
7
�ij
8
�ij
9

1
A ; (17)

and let �ijk = (�ijk )
2. Let a right bar and superscript indicate the fundamental

matrix from which the elements derive. Thus, for example, note that

�k + �lj
ij
= (�ijk )

2 + (�ijl )
2: (18)

In view of the earlier analysis, resulting in (10), we may immediately infer that

f =

r
�8 � �6
�4 � �2

����
13

; f 0 =

r
�8 � �6
�4 � �2

����
24

tan�13
1 = f

�2
�8

����
13

; tan�132 = �f
�4
�6

����
13

; tan�241 = f 0
�2
�8

����
24

; tan�242 = �f 0
�4
�6

����
24

It then follows that

tan�121 = f
�2
�8

����
12

; tan�122 = �f 0
�4
�6

����
12

; tan�341 = f
�2
�8

����
34

; tan�342 = �f 0
�4
�6

����
34

We therefore have closed-form solutions for the 2 focal lengths, and the rota-
tions between images. Implicit in the above are the directions of the various
translations between perspective centres. Note that we have so far not made any
assumption about the rigidity or otherwise of the rig.

4.3 Solving the baseline constraint equation

We have yet to completely determine the relative orientation of all image pairs
as we have still to compute the relative magnitudes of the baselines. (As noted
earlier, it is not possible to compute absolute scale of the baselines only from
corresponding points.) These relative magnitudes will complete the description
of the motion of the head.

Let the magnitude of the head's baseline vector in the initial position be
unity. The baseline vector, t12, may therefore be written as

t12 = (cos�121 ; 0; sin�
12

1 )T : (19)

Letting Lij denote the length of the baseline vector tij , we may immediately
write down the remaining baseline vectors as

t13 = L13(cos�13
1
; 0; sin�13

1
)T (20)

t24 = L24(cos�241 ; 0; sin�
24

1 )T (21)

t34 = L34(cos�34
1
; 0; sin�34

1
)T : (22)



Our task is now to determine the lengths L13, L24, L34. Returning to Figure 3,
we observe (after [12]) the baseline constraint equation

R12 t24 = t13 � t12 +R13t34: (23)

Expanding this, we have

L24

0
BB@
cos(�12 + �24

1
)

0

sin(�12 + �24
1
)

1
CCA =

0
BBBBB@

L13 cos�13
1
� cos�12

1
+ L34 cos�34

1
cos�13

�L34 sin�34
1
sin�13

0

L13 sin�13
1
� sin�12

1
+ L34 cos�34

1
sin�13

+L34 sin�34
1
cos�13

1
CCCCCA
:

Here �13 rotates I1 parallel to I3 and is such that �13 = �13
1

+ �13
2
. Recall that

�12 = �121 + �122 . Clearly, the 3 unknown lengths may not be determined from
the above equation. But, on the assumption that the baseline length of the rig
remains constant, so that L34 also has unit length, we may readily infer that

L13 =
�
sin(! � �13)� sin�

�
=sin � ; (24)

where ! = �12+�241 ��341 , � = �122 +�241 and � = �131 ��12��241 . The formula
for L24 then follows directly from the baseline constraint equation. We have
therefore described the motion of the rig. Further discussion is given in [1].

5 Adding camera tilt to the moving stereo head

Our analysis here is a generalisation of that considered in the previous section
in that the head may now tilt up or down, by a rotation about the baseline. We
note that the baseline remains con�ned to a plane, and that the optical axes
of the two cameras are at all times coplanar, but are not con�ned to the same
plane in consecutive head positions. Critically, in the analysis presented here,
either the initial or �nal position of the head should have zero tilt.

We now consider how a rotation of � about the baseline maps the left image
to a new position. A rotation of � about the baseline is equivalent, in the left
image's coordinate system, to three composite rotations: a rotation of �341 about
the y-axis, followed by a rotation of � about the x-axis, and then a rotation of
��341 about the y-axis. In addition to this tilting, the previous rotation in the
plane may still take place. The fundamental matrix may therefore be expressed
as F13 = AT TRA, where

T =

0
@ 0 � sin�13

1
0

sin�13
1

0 � cos�13
1

0 cos�131 0

1
A ; A =

0
@1 0 0
0 1 0
0 0 �f

1
A ; (25)

and R = Ry(�
13
1 + �132 )Ry(�

34
1 )Rx(�)Ry(��

34
1 ). Here, we adopt the convention

that Rm( ) signi�es a rotation of  about the m-axis.



A rather complex fundamental matrix results (given in [1]) from which the
following equations may now be derived:

tan�131 = f
�2
�8

����
13

; tan�341 = f
�1
�3

����
13

; tan � = �
�7

�8 sin�341

����
13

f2 =
��3�6

�2�5 + �1�4

����
13

; sec2 (�341 + �132 ) = sin2 �

�
1 +

�4 + �6=f
2

�5

�����
13

We therefore have closed-form solutions for the 5 unknowns f , �, �34
1
, �13

1
, �13

2
.

Consideration of the fundamental matrix F24 yields symmetric formulae for
the right camera vergence angles. The analysis is completed when we note that
the previous formulae for baseline lengths are precisely applicable here, since the
moving baseline has remained con�ned to a plane.

6 Experimental Results

We now describe synthetic tests carried out on the method of self-calibration. A
cloud of 35 points was randomly generated within a cubic volume of side 2400mm
lying approximately 600mm in front of the stereo head. These points were then
projected onto each of the 4 image planes arising in the two positions of the
stereo head. The location of each image point was then perturbed in a random
direction by a distance governed by a Gaussian distribution with zero mean and
standard deviation, �, expressed in pixel units. Such a distribution results in
an expected value for the perturbation distance of approximately 0.8 �. As a
matter of interest, in the many tests carried out here, the highest perturbation
distance was found to be 3.7 �.

Left and right focal lengths were set at 6mm and 8mm, with a �xed baseline
length of 300mm. Vergence angles were 15 deg and 17 deg in the initial position,
and 18 deg and 22 deg in the �nal position. The motion of the head was such
that the upward tilt was 10 deg, rotation of the baseline in the plane was 12 deg,
with the length of the translation vector mapping the left camera from initial to
�nal position being approximately the same as the baseline length of the head.
Image sizes were 1000� 1000 pixels.

Experiments were conducted with � varying from 0:0 to 1:2 in steps of 0:1.
For each value of �, self-calibration was run 20 times (each time operating on a
di�erent set of images) and the root-mean-square (rms) error of each parameter
was computed. Figure 4 gives a brief summary of how self-calibration is a�ected
by increasing noise, in the case considered. Errors (rms) in lengths and tilt
rotation are given as percentages of the true values, while errors (rms) in the
vergence angles are expressed in degrees. We can see from the �gures that errors
in the estimates of the various parameters vary approximately linearly with the
extent of the introduced noise, over the range considered. The lengths of the
translation vectors L13 and L24 are the parameters most a�ected by noise, with
relative errors of up to 14% occurring with noise � = 1:2. At this high noise
level, the rms error of the right camera's focal length is 5.2%, the error in the



0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2

VERGENCE ANGLES

sigma

rms error (deg) ’beta12_1’
’beta12_2’
’beta34_1’
’beta34_2’

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2

LENGTHS OF THE TRANSLATION VECTORS

sigma

rms error (%)
’L13’
’L24’

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2

FOCAL LENGTHS

rms error (%)

sigma

’f1’
’f2’

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2

TILT ROTATION

sigma

rms error (%)

’theta’

(c)

(a)

(d)

(b)

Fig. 4. Results of the experiments.

estimated tilt rotation is 8:5%, and the maximum rms error of the vergence
angles is 1:4 deg. Comparable results were obtained for similar head movements.

Given that points can routinely be located by automated techniques with an
accuracy of better than � = 0:5, the above results suggest that this approach
holds promise. Note that no special e�orts have been made to optimise the
estimates obtained via this process of self-calibration. Thus, for example, no
e�ort has been expended to generate more accurate estimates of fundamental
matrices by reducing the deleterious impact of poor localisation of points, nor
has any optimisation of the estimates been attempted as a post-process.
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A Notation semantics

Our notation di�ers from the standard notation of Faugeras et al. [3] (hence-
forth termed the Faugeras notation). Symbols F, T, R and A denote in this
work the fundamental, translation, rotation and intrinsic-parameter matrices,
respectively. Let the corresponding matrices in Faugeras notation be denoted F ,
T , R and A. Herein, the epipolar equation has the form mT Fm0 = 0, where
F = AT TRA0. This contrasts with Faugeras notation, where m0T F m = 0,
and F = A0�T

T RA�1. The full list of notational relationships is now given:

F =
p
det(A) det(A0)F T ; A = �

p
det(A)A�1; R = RT ; T = �RT T R:

See [1] for further discussion.
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