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Abstract. In this paper we present a colour constancy algorithm for
real-time face tracking. It is based on a modification of the well known
Grey World algorithm in order to use the redundant information avail-
able in an image sequence. In the experiments conducted it is clearly
more robust to sudden illuminant colour changes than popular the rg-
normalised algorithm.
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1 Introduction

In this paper we will study the problem of face tracking using colour. Trackers
based on this feature, which is the most frequently used feature for face tracking
[14], are used as an initial estimate or follow-up verification of face location in
the image plane.

The primary problem in automatic skin detection is colour constancy. The
[RGB] colour of an image pixel depends not only on the imaged object colour,
but also on the lighting geometry, illuminant colour and camera response. For
example [6], if the scene light intensity is scaled by a factor s, each perceived pixel
colour becomes [sR, sG, sB]. The rg-normalisation algorithm provides a colour
constancy solution which is independent of the illuminant intensity by doing:
[sR,sG,sB] — [sR/s(R+ G+ B),sG/s(R+ G + B)]. On the other hand, a
change in illuminant colour can be modelled as a scaling «, 8 and « in the R, G
and B image colour channels. In this case the previous normalisation fails. The
Grey World (GW) algorithm [6] provides a constancy solution independent of
the illuminant colour by dividing each colour channel by its average value.

In this paper we introduce a colour constancy algorithm, based on GW,
that can be used for real-time colour-based image segmentation which is more
robust to big sudden illuminant colour changes than the popular rg-normalised
algorithm.

* Work funded by CICyT under project number TIC1999-1021



2 Grey World-based colour constancy

Colour constancy is the perceptual ability to assign the same colour to objects
under different lighting conditions. The goal of any colour constancy algorithm is
to transform the original [RG B] values of the image into constant colour descrip-
tors. In the case of Lambertian surfaces, the colour of an image pixel (ij) can be
modelled by a lighting geometry component s;;, which scales the [rgb] surface
reflectances of every pixel independently, and three colour illuminant compo-
nents («, §,7), which scale respectively the red, green and blue colour channels
of the image as a whole [6]. The lighting geometry component accounts for sur-
face geometry and illuminant intensity variations, while the colour illuminant
components account for variations in the illuminant colour. According to this
model, two pixels I(ij) and I(kl) of an image would have the following [RGB]
values: [s;jarij, 5ij89ij, 5ijVbiz)s [SkiQT ki, SkiBIkt> SkiYbri], Where [ri;, gij, bi;] and
[rki> 9ri, bri] represent surface reflectances; i.e. real object colour, independent of
the illuminant.

The GW algorithm proposed by Buchsbaum [2] assumed that the average
surface reflectances in an image with enough different surfaces is grey. So, the
average reflected intensity corresponds to the illuminant colour, which can be
used to compute the colour descriptors. This algorithm was refined in [8] by
actually obtaining an average model of surface reflectances and proposing a
procedure to compute the average image reflectance.

Let us define the image average geometrical reflectance, fi, as
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where n is the number of image pixels. It represents the average [RGB] image
values, once we have eliminated the colour illuminant component.

If we assume that the average geometrical reflectance is constant over the
image sequence, then the image average [RGB] variation between two images
is proportional to the illuminant colour variation. On the basis of this, a colour
normalisation invariant to illuminant colour changes can be devised:
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where, if z represents the colour channel (z € [r, g,b]), I, (ij) is the value of the
channel z for pixel I(ij), and [i, is the image channel x average geometrical
reflectance.

The previous normalisation is what we call basic GW algorithm. It is robust
to illuminant colour variations, but it only works for sequences with constant
image average geometrical reflectance. In consequence, basic GW fails when a
new object appears in the image or when the illuminant geometry changes. In
the next section we propose an extension to the basic GW algorithm that solves
these problems using redundant information available in an image sequence.



3 Face tracking using Dynamic Grey World

In this section we present a colour-based face tracking algorithm. First we will
briefly describe how to track a coloured patch using simple statistics, afterwards
the Dynamic GW (DGW) algorithm is presented.

3.1 Face segmentation and tracking using a skin colour model

Given a sequence of colour images, building a face tracker is straight forward
if we have a reliable model of the image colour distributions. Let I,45 be the
[RGB] channels of image I, and let p(I,g|skin) and p(I.g|back) be the con-
ditional colour probability density functions (pfds) of the skin and background
respectively (we assume that background is anything that is not skin). Using the
Bayes formula, the probability that a pixel with colour I.g, be skin, P(skin|I g;),
can be computed as follows:

P(Irgp|skin) Py
(Irgb|skin) Ps + p(Irgs|back) Py’

P(skin|I,..5) =
(skin|Igp) ’

where P; and P, are the a priori probabilities of skin and background. The
transformation T (Ir.gp) = 255 x P(skin|I,4) returns an image whose grey values
represent the probability of being skin (see first column in Fig. 3). Face tracking
on this image can be performed with a mode seeking algorithm, like [4], by
computing the position and orientation of the face colour cluster in each frame

The problem now is how to make the previous statistical model invariant to
variations in the scene illumination. In most real-time systems this invariance
is achieved by working in a rg-normalised chromaticity space. As we previously
mentioned, this method fails when there is a sudden change of the illuminant
colour. In our segmentation algorithm we propose using the GW colour space,
[#gb], defined in section 2:

L nh as
Tl = ST

We model the skin GW colour distribution with a continuous Gaussian
model. As can be seen in Fig. 1, p(I,;|skin) is approximately Gaussian. On the
left are shown the Chi-square and Gaussian plots of the I3, I; and I; marginals
and the Iﬁgil multivariate distribution. From the analysis of these plots we can
verify that the assumption p(I,;|skin) ~ N(ms, X5, 1,,;) can not be rejected.
On the other hand, it is not possible to find an analytic model for the background
pdf, so we will model it with a uniform distribution, hb(I,:g,;)- Other authors
have indicated different preferences for modelling the colour distributions. In
[11] Gaussian mixture models, whereas in [5] and [12] pure histogram-based rep-
resentations are chosen. In our experiments we found that using a a continuous
model yields better results because of the high space dimensionality (3D).
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Fig. 1. Skin colour pdf in GW space. On the left is shown the skin colour cluster in
GW colour space. On the right are shown the Chi-square plot for the multivariate
distribution and the Normal plots for the marginals.

If we approximate the priors Ps & ng/n and Py & ny/n, where n, and n; are
respectively the number of the skin and background pixels, then
Ng N(’I’T’L, E, Irgb)
Ng N(T)_’L, X, Irgb) + np hb(Irgb)

P(skin|I q) =

3.2 The Dynamic Grey World algorithm

The main problem of the basic GW algorithm is that it was conceived for static
images; i.e. it fails when there is a big change in the image average geometrical
reflectance. In this section we propose a dynamic extension to GW (DGW) which
will detect this situation and update the GW model (see Fig. 2).

In the following we assume that there exists a partition of the image se-

quence into a set of image subsequences such that the image average geometri-
cal reflectance is constant over each subsequence; i.e. the basic GW algorithm
can be used as a colour constancy criterion over each subsequence. We will use
the first image of each subsequence as a reference image. The other images of
the subsequence will be segmented using the colour descriptors of the reference
image.
Let Iy, Ifgb and Iﬁ;bl be respectively the reference image, the present and
the previous image, Fngi) be the face pixels in GW space, ﬂi;b be the average value
for each colour channel in If ;, ﬂgg and ﬂfgt ; be the average GW descriptors for
the face pixels in the reference and present image, and mg, X5, hy, Ps, P, be the
GW colour descriptors statistical distribution for the reference image.

The problem now is how to segment each reference image and how to detect
a change of subsequence. Reference imfx_%es can be segmented with the average

[RGB] values of the previous image (ji” g )> provided that the change in average



Initialisation
/*Initialise the reference image model using motion
segmentation and a precalculated colour model */
[ms,Z's,Ps,Pb,ﬂf;E] = InitTracking();

While (true) /* tracker main loop */
ﬂﬁ;b = Mean(Iﬁgb); /* image mean rgb values */
¢ Ligb

ah _Jt
7gb “,Ingb

/* GW normalisation */
Ft. = ProbabilisticSegment(Iﬁgg,mS,Z’S,Ps,Pb); /* segment img */
ﬂr‘gf) = ComputeAngaceGW(Féga); /* face avg GW descriptors */
i t
If ||@f —ﬂfﬁ,” > A then /* change of subsequence */

rgl;
It
I;gé = 712"_b1 /* GW normalise with previous mean */
rgb
;gi; = ProbabilisticSegment(I;fgg,ms,Zs,PS,P(,); /* segment image */
I;gé = I:ﬁ& /* update reference image */
ﬂfgiz = ComputeAngaceGW(Fzgg); /* face avg GW descriptors */

[ms,Es,Ps,Pb] = ColourDistrib(F;ﬁ); /* ref. colour distrib */
end /* if */
end /* while */

Fig. 2. Dymanic Grey World Algorithm

geometrical reflectance is caused mainly by the appearance of new objects in the
scene.

A change of subsequence is detected just by detecting a change in the average
geometrical reflectance. This can not be accomplished on the basis of analysing
fitgps @S ji),y also changes with the illuminant colour. We solve this problem by
monitoring the average GW descriptors of the face pixels. As they are invariant
to illuminant colour changes, a change in these descriptors is necessarily caused
by a change in average geometrical reflectance.

4 Experiments

In our experiments we used a VL500 Sony colour digital camera at 320 x 240
resolution, iris open, no gain, no gamma correction. Images were taken with
regular roof fluorescent lights and variations in illumination colour were obtained
using a controled tungsten light, a green color filter, and turning on and off roof
fluorescent lights.

In the first experiment we validate the DGW algorithm hypothesis: variations
in the average geometrical reflectance can be detected, and the reference image
of each subsequence can be segmented. We acquired a sequence of 200 images
with a green object appearing at one point and illuminant geometrical variations
taking place at different moments. The result of this experiment is shown, from




left to right, in Fig. 3: the first image of the sequence (image 1), a change
in the illuminant (roof lights turned off) (image 26), and the appearance and
disappearance of an object (images 88 and 139). In this experiment the system
detects three subsequences (1 to 87, 88 to 138, and 139 to 200). This is clearly
visible in the plot at the bottom of Fig. 3. In image 26 the roof fluorescent lights
are turned off. This geometrical illumination variation can be perceived again
in the face GW desciptors plot. In this case the segmentation is good. This is
an example of “worst case” test. In similar situations with stronger variations in
the illuminant geometry, the system may not be able to segment the image and
eventually may loose the target.

Fig. 3. Hypothesis validation experiment. On the first row four images of a sequence are
shown. Their segmentation with the DGW algorithm is presented on the second row.
The average r,g and b face GW descriptors (in red, green and blue color respectively)
are shown in the third row.

The goal of the next experiment is to check that the dynamic extension to
GW is necessary; i.e. to see what would happen if we segment the previous
sequence with the basic GW algorithm. In Fig. 4 are shown the same images
as in Fig. 3. We can clearly perceive that without the dynamic extension, the
initial colour model is invalid when a change in the image average geometrical
reflectance (caused by the appearance of an object) takes place. The initial model
gradually becomes valid again as the object disappears (see last column).

In the following experiment we compare the performance of the DGW algo-
rithm with the rg-normalised algorithm. We have created a sequence with a set
of images with “difficult” background (i.e. brownish door and shelves to distract
the segmentation). In Fig. 5 four frames of the sequence are shown in each colum
representing: initial image, red object appears, tungsten frontal light turns on,



Fig. 4. DGW algorithm versus basic GW. DGW algorithm segmentation results are
shown in first row and basic GW in the second one.

green filter is introduced. DGW segmentation results are shown in the second
row and rg-normalised results in the third one. Visual inspection of these results
show that both algorithms have similar results in the least favourable cases for
the DGW algorithm (second and third columns) and a clear success of the DGW
compared to the rg-normalisation when the illuminant colour abruptly changes
(fourth column).

Fig. 5. Comparison of DGW and RG-normalisation colour constancy for face tracking.

5 Conclusions

We have introduced the Dynamic Grey World algorithm (DGW) a colour con-
stacy algorithm based on an extension of the well known GW algorithm. It
was designed to work in real-time with sequences of images with varying envi-
ronmental conditions. In the experiments conducted it performed better than
the rg-normalised algorithm when sudden changes in the illuminant colour take
place. The least favorable case for our algorithm occurs when changes in the il-
luminant geometry take place. In this paper we have analysed some of the weak



points of the rg-normalised algorithm. The DGW algorithm is not perfect either,
as its performance can be seriously affected by strong and fast changes in the
illuminant geometry. In spite of these limitations, colour-based trackers are good
as a fast initial estimate or follow-up verification of face location.
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