
Efficient Tracking of 3D Objects Using Multiple
Orthogonal Cameras

Enrique Mũnoz†, Jośe M. Buenaposada‡, Luis Baumela§

†Dep. Sistemas Inforḿaticos y
Computacíon,

Univ. Complutense Madrid

c/Prof. Garćıa Santesmases s/n,

28040 Madrid, Spain

‡Dep. Ciencias de la
Computacíon,

Univ. Rey Juan Carlos
c/Tulipán s/n,

28933 Ḿostoles, Spain

§Facultad de Inforḿatica
Univ. Politécnica Madrid

Campus Montegancedo s/n,

28660 Madrid, Spain

†
emunozco@fdi.ucm.es, ‡josemiguel.buenaposada@urjc.es, §lbaumela@fi.upm.es

http://www.dia.fi.upm.es/∼pcr/

Abstract

We introduce a multi-view direct procedure for efficiently tracking 3D ob-
jects. It is an extension of Hager and Belhumeur’s factorisation approach to
the case of three-dimensional objects and multi-camera setup. By tracking a
3-D object we mean to estimate the pose and location of the object through
a video sequence. A novel parameterisation of the object texture allow us
to compute the Jacobian that emerges in the minimisation independently of
camera pose. A remarkable feature of this Jacobian is that itis shared by all
cameras and a large part of it is constant. The pixels viewed by each camera
determine the rows of the Jacobian used for tracking. We perform qualitative
and quantitative experiments confirming the validity of theapproach.

1 Introduction

Efficiently tracking 3D objects has been a topic of interest in Computer Vision for years,
with applications in augmented reality, advanced human-machine interfaces and robotics.
Tracking is achieved by estimating the parameters of a function representing the relative
position between camera and object. This can be achieved by matching a sparse collection
of features (feature-based approaches) or by directly minimising the difference in image
intensity values (direct approaches). The main advantage of feature-based approaches
is the possibility of working with very large inter-frame motion [8]. This make them
best suited for target detection or for recovery after a complete loss. Direct approaches
assume that inter-frame motion is small, as is the case in video sequences. Tracking
is usually posed as a Gauss-Newton-like optimisation process, minimising a similarity
measure between a reference model and the target region [7].Their main advantage is
accuracy, since usually all pixels in the region contributeto the estimation. This is a key
feature, for example, for applications in virtual reality and robotics in which tracking jitter
must be minimised.

Many applications of tracking (e.g. robot navigation [7], augmented reality, face
tracking [6]) also require real-time video processing capabilities. So far, two main re-

search paths have have been explored to increase the efficiency of direct image alignment
methods:

a) Reduce the computational cost.The computational cost of each Gauss-Newton iter-
ation can be reduced by precomputing part of the image Jacobian, as done by Hager
and Belhumeur [6], or all of it, as in Baker and Matthews’ Inverse Compositional
Image Alignment (ICIA) algorithm [1]. Computational requirements may also be
lowered by discarding pixels that do not contribute significantly to the minimisa-
tion. These pixels are normally located in low-textured image regions [4].

b) Improve the convergence properties.Efficiency has also been improved by increas-
ing the convergence rate of the minimisation algorithm. Benhimane and Malis [3]
propose the Efficient Second order Minimisation procedure (ESM) which con-
verges faster and with a larger convergence region than Gauss-Newton, without the
need of computing the Hessian matrix. Faster convergence rate and larger conver-
gence region may also be achieved by selecting pixels which verify the assumption
of linearity w.r.t. the motion parameters in the minimisation [2].

In this paper we introduce a multi-view direct procedure forefficiently tracking 3D
objects. It is an extension of Hager’s [6] factorisation approach to the case of three-
dimensional objects and multi-camera setup. Our factorisation is closely related to the
solution introduced by W. Sepp in [10]. His tracker, nevertheless, only works in the
vicinity of the reference image. Our tracker is based on a 3D model of the target. It is
composed of a textured 3D point cloud, which is valid for any relative orientation between
camera and object.

Most previous approximations to 3D tracking are monocular,but a number of recent
approaches are based on multiple views. Devernay et al. [5] use a Lucas-Kanade-like
procedure to track both 3D points and texture patches (surfels). In [11], pose is computed
from both point matching and similarity measures from off-line key-frames (images) of
the target. Baker et al. determines object’s motion simultaneously from several cameras
using an Active Appearance Model (AAM) on each camera constrained globally by a
single 3D model [9].

In our multi-view procedure, tracking is based on a direct approach that minimises the
discrepancy between the sequence of image values and the pixel intensities (texture) of the
target. This texture and its derivatives w.r.t. object’s motion will be defined for each 3D
point (vertex) of the object, even for those not visible in the first frame of the sequence (as
opposed to [10] and [5]). These derivatives, crucial for 3D motion estimation, will also be
independent of the camera position, which enables us to use any number of cameras with
a single Jacobian. In our approach, each target point has associated one texture derivative.
Each camera determines the subset of object points that are visible to the tracker and will
be used for tracking.

The paper is organised as follows: Section 2 introduces the object model and notation
used through the paper. The efficient estimation procedure for 3D motion is presented in
Section 3, and expanded with annotations in appendix A. Section 4 deals with the multi-
view extension. Finally, in Sections 5 and 6 we describe the experiments conducted and
draw conclusions.

(a) (b)

Figure 1: (a) Example of virtual cameras around the object. Each camera optical axis
is oriented along the vertex normal attached to it. (b) Texture map for numbered cube.
Notice that the texture covers all possible views of the object.

2 Model Description

Let M be our object model,M = {V ,T }, composed of 3D points (vertices) and inten-
sity values (texture). The set of model vertices is defined byV = {xi ∈R

3|i = {1, . . . ,V}},
where each point is expressed in terms of a scene coordinate system with origin atO. Each
object vertex has a texture value, defined asT = {T[xi] ∈ R|i = {1, . . . ,N}}, by means
of a texture map T: R

3 7→ R. Figure 1 shows both the texture object and its texture map
represented as an image.

The object pose and location are parametrically defined by amotion model(or warp)
f ∈ SE(3). Motion in 3D is represented as a rigid body transformation with a rotationR ∈
SO(3) and a 3D offsett ∈ R

3: x′ i = Rxi + t,∀xi . Of course, both rotation and translation
are common to the whole set of object’s vertices. Rotation matrices are parameterised
with an exponential mapω = (ωx,ωy,ωz)

⊤. These values are stacked together with the
translation values in a parameter vectorµ ∈ R

6: µ = (ω⊤
, tx, ty, tz)⊤. Let It [u] be the

intensity value at the pixel locationu of the image acquired at timet. Under Lambertian
assumptions, the followingbrightness constancyequation holds

T[x] = I t [p(f(x,µ))], (1)

where vectorI t is the result of stacking the intensity values of the projections of each
vertexxi in imageIt . The same applies toT. Vertices are projected onto the image plane
using an orthogonal projection functionp, that depends on the known camera intrinsics.

2.1 Texture equivalence

Now, we will derive the constancy equation using an alternate representation for the tex-
ture values of the object. We will use a set of virtual cameras(one per point) such the
image intensities resulting from the projection of each point equals the texture values
for that vertex. This is similar to Fua’s key-frames representation, [11], but having one
(virtual) key-frame per object vertex.

Let us suppose now that we haveN orthogonal cameras around our object represented
by the location of their optical centres,Ci , i = 1. . .N. Each camera has its optical axis
aligned with vectorni , the normal to the pointxi (see Figure 1). Pointxi is expressed in
the reference coordinate system of cameraC j asx j

i using

x j
i = φ j(xi) = R jxi −R j t j ,

xi = φ j
−1(x j

i) = R
⊤
j x j

i + t j ,
(2)

whereφ j ∈ SE(3) is a rigid body transformation between both coordinate systems, which

is given by a rotationR j ∈ SO(3) and a translationt j ∈ R
3. Note that pointx j

i always has
the formx j

i = (0,0,zj)
⊤ (expressed in camera coordinates). LetI j be the image captured

by C j . Points are orthogonally projected onto the image plane by means of functionp j ,
which depends on the camera intrinsics. Each camera may havedifferent intrinsics. Point
x j

i is projected onto the principal point ofI j , so its intensity values equals the texture value
of the vertex.

T[xi] = I j [p j(x
j
i)] ∀xi . (3)

Combining equations (1), (2) and (3) results in a new brightness constancy equation
expressed in terms of each virtual cameraC j ,

I j [p j(x
j
i)] = It [p(f(φ−1

j (x j
i),µ t))] ∀x j

i , (4)

whereµ t is the vector of parameters that optimally correspond to theobject pose for time
t.

Using the above assumption, we can pose our tracking problemin terms of a minimi-
sation of the motion parametersµ,

min
µt+1

J (µ) = ||I j [p j(x
j)]− I t+1[p(f(φ−1

j (x j),µ t+1))]||
2
. (5)

Assuming incremental changes in our motion parameters between two consecutive time
instants, we can rewrite equation (5) as

min
δ µt

J (µ) = ||I j [p j(x
j)]− I [p(f(φ−1

j (x j),µ t +δ µ t))]||
2
. (6)

Making a Taylor series expansion at(µ t , t), we can rewrite the right term of (6) as

min
δ µt

J (µ) = ||e(t)−
∂ I t [p(f(φ−1

j (x j),µ)])

∂ µ

∣
∣
∣
∣
∣
µ=µt

︸ ︷︷ ︸

J(t)

δ µ t ||
2
, (7)

where ande(t) is the vector of image differences,e(t) = I j [p j(x
j)]− I j [p(f(φ−1

j (x j),µ t +

δ µ t))], andJ(t) is the Jacobian matrix relating the instantaneous change ofimage values
with the motion parameters, both at time instantt. With least-squares we can compute the
minimum ofJ asδ µ t = (J(t)⊤J(t))−1

J(t)⊤e(t). Usually, this estimation is iteratively
refined (Gauss-Newton minimisation) until a stop criterionis reached.

3 Efficient Tracking

The major limitation of the tracking procedure described above is the computational cost
of recomputing the image derivatives for each image in the sequence, since the Jacobian
matrix J(t) depends onIt . We will alleviate this computational burden extending the
factorisation scheme proposed in [6] to the case of a 3D textured object. The key idea
here is to express intensity changes due to object’s motion in terms of the texture map of
the object instead of the image values at instantt. Taking derivatives in (4) w.r.t.x j we
have1,

∂ I j [p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

≈
∂ I t [p(f(φ−1

j (X̂),µ t))]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

. (8)

And applying the chain rule to the right side of (8) leads us to

∂ I t [p(f(φ−1
j (X̂),µ t))]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

=

[

∂ I t [p(F̂)]

∂ F̂

∣
∣
∣
∣
F̂=f(φ−1

j (x j),µt)

]

·

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]

·

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]

(9)

We can move the two rightmost regular matrices of (9) to the other side of equation,
resulting in

[

∂ I t [p(F̂)]

∂ F̂

∣
∣
∣
∣
F̂=f(φ−1

j (x j),µt)

]

≈

[

∂ I j [p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]

·

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]−1

·

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]−1
(10)

On the other hand, we can expandJ(t) using the chain rule,

∂ I t [p(f(φ−1
j (x j),µ))]

∂ µ

∣
∣
∣
∣
∣
µ=µt

=

[

∂ I t [p(F̂)]

∂ F̂

∣
∣
∣
∣
F̂=f(φ−1

j (x j),µt)

]

·

∂ f(φ−1

j (x j),µ)

∂ µ

∣
∣
∣
∣
∣
µ=µt

.

(11)

1Note here that we assume that there is an extension of the texture value out of the object surface, so the

derivative exists. Since our projection is orthogonal,
∂ Ik[pk(X̂)]

∂z

∣
∣
∣
∣
X̂=xk

= 0 for any point on the object surface.

Plugging equation (10) into (11) results in a expression forJ that does not depend onI t ,

∂ I t [p(f(φ−1
j (x j),µ))]

∂ µ

∣
∣
∣
∣
∣
µ=µt

≈

[

∂ I j [p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]

·

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]−1

·

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]−1

·

∂ f(φ−1

j (x j),µ)

∂ µ

∣
∣
∣
∣
∣
µ=µt

.

(12)

This equation can be further refined so our Jacobian matrix can be represented asJ(t) =
M0Σ(t). Matrix M0 is such that it depends on the vertices and the texture map, whereasΣ(t)
is a matrix that depends on the motion parameters and therefore it must be recomputed
for eacht. Details on derivation can be found in appendix A. Optimal parameters at time
t are efficiently computed as

δ µ t = (Σ(t)⊤(M⊤0 M0)Σ(t))
−1
Σ(t)⊤M⊤0 e(t). (13)

Notice that the largeN× 30 matrix M0 is constant whereas time-changingΣ(t) is just
30×6 size, so finding our optimum has been considerably speeded up as much of these
values can be precomputed.

4 Multiple Camera Tracking

From equation (??),we know that the Jacobian matrix is defined for the whole setof
vertices of the object, but at time instantt only a portion of them are visible. This implies
that only some rows ofJ(t) will be used: those corresponding to the visible vertices
projected ontoIt . Let us suppose we have two or more cameras. Detailed inspection of
equation (??) shows that matrixJ(t) does not depend on the camera position at timet, but
on the pose of the virtual cameras and the texture map values.Then, at time instantt we
could use those rows ofJ(t) that are deemed as visible points at each camera. Figure 2
shows the visibility map for the camera setup of Figure 1.

Again, from (??), the matrix rowJ(t)i at timet depends only on the texture mapTxi

iff equation (8), the derivative of the brightness constancy, holds. This is only true when
the imageIt corresponds to the virtual camera attached toxi . Thus, for each given camera,
we could only use those rows ofJ(t) corresponding to points whose normal have the same
orientation of the optical ray of the camera. However, we canrelax the condition on the
brightness constancy so that a larger number of rows per camera are selected. The larger
the angle difference between the optical axis and the point normal, the lesser the accuracy
of the brightness constancy assumption,and hence, the worse will be the approximation
to our true Jacobian matrix. On the other hand, notice that the more cameras we have, the
more rows ofJ(t) will be available, and hence, the better will be the tracking.

Notice as well that some terms from (13) must be recomputed for each time instant
because of changes of the visibility of the vertices. However, recomputing consist of
deleting or adding rows ofM0 and then operating between the matrices but the values of
M0 remain constant.

(a) (b)

Figure 2: (a) Views from the cameras located as described in Figure 1. (b) Visibility
map for computing matrixJ(t) at the given setup. The vertices that are not visible in any
camera are overlaid in blue.

5 Experimental Validation

The goal of these experiments is to empirically validate ouralgorithm. This is achieved
by using a sequence of synthetically created images where the object’s motion is known
with absolute accuracy. The sequence is 600 frames long and comprises a textured cube
simultaneously rotating and translating in the three axis of coordinates.

The cube is 100 units side and has a Gaussian pattern with a different number attached
to each face (see Figure 1) and it is placed at the origin of thescene reference system.
We simulate four cameras located at 4000 units from the object at different orientations
(again, see Figure 1). Initially, each camera looks at a different face of the object and they
all share the same intrinsics. We simulate a orthographic projection camera by using a
focal length of 20mmtogether with the considerable object-to-camera distance. The cube
spins 360 degrees around each one of it axis of rotation whilesimultaneously translates
through the scene. Snapshots of several frames are shown in Figure 3.

For each frame of the sequence we compute the motion parameters using the pro-
posed algorithm. The iterative procedure minimises the texture values corresponding to
each visible vertex with the images values captured from different cameras. Qualitative
results are presented in Figure 3. We overlay onto each imageof the sequence a wire-
frame model of the object. The model is placed using both the ground-truth and the
estimated values of the motion parameters, which allow us tocompare them visually. We
also present quantitative results in Figure 4, where we plotground-truth parameter values
against the estimations computed from the algorithm. Estimation for rotation parameters
is quite accurate whereas the 3D offset is precise enough in most of the sequence. Notice
that the estimated values diverge from the ground-truth forsome frames, i.e., the “valley”
of ty. This is caused by a special configuration of the cube’s facesin which the normal of
all six faces depart considerably from the four cameras optical axes. In this caseJ(t) is
not accurately estimated.

Frame 1 Frame 100 Frame 200 Frame 300 Frame 400 Frame 500

Figure 3: Selected frames from the synthetic sequence. Eachrow corresponds to a dif-
ferent camera which, initially, looks at a different face ofthe cube. We overlay onto each
image a wire-frame model of the object using the ground-truth parameters (solid magenta)
and the estimated ones (solid blue).

6 Conclusions

We introduced an algorithm for efficiently estimating the 3Dmotion of a known target
using multiple orthogonal cameras. The algorithm is efficient since a major portion of
the Jacobian involved in the minimisation is precomputed anremains constant over time.
The algorithm relies on an object model based on a textured set of object points, which
is independent of the camera pose. This allows us to precompute off-line the relationship
between object’s motion and the change in image intensities(the image Jacobian matrix),
even for points of the object that are not initially visible.Moreover, we can extend this
approach to multiple cameras due to the independence of the Jacobian matrix of the cam-
era pose. For this to be true, some constraints must be satisfied: a) the cameras must be
orthographic; b) only those pixels whose normal orientation coincides (or is close to) that
of the camera optical axis are eligible for tracking. Neglecting this constrains leads to a
loss of accuracy in the tracking.

Acknowledgements
Authors were funded by the SpanishMinisterio de Educacíon y Ciencia, under contract
TRA2005-08529-C02-02.

References

[1] Simon Baker and Iain Matthews. Lucas-kanade 20 years on:A unifiying framework.
International Journal of Computer Vision, 56(3):221–255, 2004.

0 100 200 300 400 500 600
−3

−2

−1

0

1

2

3
ω

x

frame #
0 100 200 300 400 500 600

−0.5

0

0.5

1

1.5

2

ω
y

frame #
0 100 200 300 400 500 600

−3

−2

−1

0

1

2

3

ω
z

frame #

0 100 200 300 400 500 600
−30

−20

−10

0

10

20

30

40

t x

frame #
0 100 200 300 400 500 600

−60

−40

−20

0

20

40

60

t y

frame #
0 100 200 300 400 500 600

−40

−30

−20

−10

0

10

20

30

40

t z

frame #

Figure 4: Estimated (red) vs. ground-truth (dotted blue) parameters. Top: Plotted values
correspond to the three values of the exponential map that represents object’s rotation.
Bottom: Plotted values correspond to the object’s 3D translation in the scene.

[2] S. Benhimane, A. Ladikos, V. Lepetit, and N. Navab. Linear and quadratic subsets
for template-based tracking. InProc. of CVPR, 2007.

[3] S. Benhimane and E. Malis. Homography-based 2d visual tracking and servoing.
International Jounal of Robotics Research, 26(7):661–676, July 2007.

[4] F. Dellaert and R. Collins. Fast image-based tracking byselective pixel integration.
In ICCV99 Workshop on frame-rate applications. IEEE, 1999.

[5] F. Devernay, D. Mateus, and M. Guilbert. Multi-camera scene flow by tracking 3-d
points and surfels. InProc. of CVPR, volume II, pages 2203– 2212, 2006.

[6] Gregory Hager and Peter Belhumeur. Efficient region tracking with parametric mod-
els of geometry and illumination.Trans. on PAMI, 20(10):1025–1039, 1998.

[7] C. Mei, S. Benhimane, E. Malis, and P. Rives. Constrainedmultiple planar template
tracking for central catadioptric cameras. InProc. BMVC, volume II, pages 619–
628, 2006.

[8] Julien Pilet, Vincent Lepetit, and Pascal Fua. Real-time non-rigid surface detection.
In Proc. of CVPR. IEEE, 2005.

[9] Krishnan Ramnath, Seth C Koterba, J. Xiao, C. Hu, Iain Matthews, Simon Baker,
Jeffrey Cohn, and Takeo Kanade. Multi-view aam fitting and construction.Interna-
tional Journal of Computer Vision, 76(2):183–204, Feb 2008.

[10] Wolfgang Sepp and Gerd Hirzinger. Real-time texture-based 3-d tracking. InProc.
of Deutsche Arbeitsgemeinschaft für Mustererkennung e.V., volume 2781 ofLNCS,
pages 330–337. Springer, 2003.

[11] L. Vacchetti, V. Lepetit, and P. Fua. Stable 3–d tracking in real-time using integrated
context information. InConference on Computer Vision and Pattern Recognition,
Madison, WI, June 2003.

A Derivation of the Factorisation Scheme

Equation (12) can be further simplified using the definitionsfor both constancy equations
and functionsf andφ j . Firs, we assume that derivatives onto the image plane are equal

to derivatives onto the texture map, i.e.,

∂ I j [p j(X̂)]

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

i

 = ∇Txi for object vertex

i. From our warp definition we have that

[

∂ f(Ŷ,µ t)

∂ Ŷ

∣
∣
∣
∣
Ŷ=φ−1

j (x j)

]−1

= R(t)⊤, and from

equation 2,

[

∂φ−1
j (X̂)

∂ X̂

∣
∣
∣
∣
∣
X̂=x j

]−1

= R j . Taking partial derivatives of the warp function

w.r.t. the motion parameters we can rewrite thei − th row of equation (12),Ji , as

Ji(t) = ∇TxiR jR(t)
⊤

[

∂R(ω̂x)
∂ω̂x

∣
∣
∣
∣
ω̂x=ωx(t)

xi
∂R(ω̂y)

∂ω̂y

∣
∣
∣
∣
ω̂y=ωy(t)

xi
∂R(ω̂z)

∂ω̂z

∣
∣
∣
∣
ω̂z=ωz(t)

xi I3

]

.

(14)
We can reorder this equation as a matrix multiplication in the form:

Ji = ∇TxiR j

x⊤i 0 0 x⊤i 0 0 x⊤i 0 0 1 0 0
0 x⊤i 0 0 x⊤i 0 0 x⊤i 0 0 1 0
0 0 x⊤i 0 0 x⊤i 0 0 x⊤i 0 0 1

·

vec(R(t)⊤Ṙωx(t)) 0 0 0

0 vec(R(t)⊤Ṙωy(t)) 0 0

0 0 vec(R(t)⊤Ṙωz(t)) 0

0 0 0 R(t)⊤

, (15)

where0 is a padding matrix of zeros of the appropriate size andvec(A) is the vectorised
form of matrixA. Derivatives of the rotation matrix are expressed in dot form, i.e.,Ṙωx(t) =

∂R(ω̂x)
∂ω̂x

∣
∣
∣
∣
ω̂x=ωx(t)

. Notice that the rightmost matrix depends on the motion parameters at

time t, but is common to every single vertex in the object. This matrix will be known as
Σ(t). The leftmost matrix depends only on thei − th vertex of the object and its texture.
We can stack all these matrices into a constant matrixM0, such thatJ = M0Σ(t).

