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Abstract

Pixel brightness variations in an image sequence depend both on the objects’

surface reflectance and on the motion of the camera and object. In the case

of rigid shapes some proposed models have been very successful explaining

the relation among these strongly coupled components. On the other hand,

shapes which deform pose new challenges since the relation between pixel

brightness variation with non-rigid motion is not yet clear. In this paper, we

introduce a new model which describes brightness variations with two inde-

pendent components represented as linear basis shapes. Lighting influence is

represented in terms of Spherical Harmonics and non-rigid motion as a linear

model which represents image coordinates displacement. We then propose

an efficient procedure for the estimation of this image model in two distinct

steps. First, shape normals and albedo are estimated using standard photo-

metric stereo on a sequence with varying lighting and no deformable mo-

tion. Then, given the knowledge of the object’s shape normals and albedo,

we efficiently compute the 2D coordinates bases by minimizing image pixel

residuals over an image sequence with constant lighting and only non-rigid

motion. Experiments on real tests show the effectiveness of our approach in

a face modelling context.

1 Introduction

Being able to deal with non-rigid motion is a Computer Vision problem that has received

a lot of attention in recent years. The main reason is that there are very interesting de-

formable objects, from the application point of view, like the face. In order to deal with

non-rigid objects we need a model that is accurate enough to precisely describe and sep-

arate all sources of variation in object’s appearance. To do this we can build off-line, and



possibly automatically, a model able to represent the object under any imaging condi-

tion. These models are a description of certain properties such as the 3D shape, surface

normals, the image texture and the reflectance properties of object’s surface. All these

models can be used for different tasks such as object tracking, detection or recognition.

The ongoing trend of the last years is to compute the object models in a generative

manner – each model is estimated from a training set of images and not tuned from a

priori modelling of the data. Thus, in Structure from Motion (SfM) trajectories of points

from a set of sparse features are used to extract rigid [15] and non-rigid [4] 3D models.

In Photometric Stereo (PS) [1] a set of images of a rigid shape under different lighting

conditions is used to compute surface normals (a needle map) and albedo. In Active

Appearance Models (AAM) [6, 12] the image variations in a video are used to obtain a

texture parametrization together with a set of 2D deformable basis.

In recent years the relation between illumination changes, shape of the object and

subspace models of illumination (built from a PCA over a set of illumination variying

sequence of images) has been explained in terms of Spherical Harmonics [2]. Even the

case of changing lighting and rigid motion of the objects has been successfully mod-

eled [18, 17]. Anyhow, there is not such a model explaining simultaneously the influence

of illumination variations and non-rigid motion on the appearance of a deformable object.

In this paper we first show that, with linear assumptions, it is possible to model the

influence of non-rigid motion and illumination in appearance as a set of two independent

basis. Our work is based on the description of the reflectance properties of a surface as

a set of Spherical Harmonics basis [2]. Then, we join this model with the 2D modes of

deformation at each pixel given by the non-rigid motion and find a complete description

of the brightness variations with two independent linear subspaces of deformation and

illumination. Therefore we propose an extension of previous approaches to the case of a

static but deforming object when the illumination is varying.

Given this new theoretical model, we then define a procedure able to extract these

bases as a two step algorithm. Initially we compute surface normals and albedo with a

sequence where a static target is illuminated by a moving light source using the Basri and

Jacobs’s approach [1]. Next, given the surface normals and albedo, we compute the 2D

modes of deformation from a sequence with the subject deforming under three distinct

light sources. Given the first stage, this step reduce to a simple PCA computation over the

training images followed by a LS estimate for each image pixel.

2 The joint illumination-deformation model

We introduce a new appearance-based model representing the variations in the image

caused by changes both in 2D non-rigid motion and in the illumination of the scene. Our

new model is based on a linear approximation to the object’s reflectance function. The

set of images of a convex object with Lambertian reflectance function forms a convex

cone in the space of all possible images [3]. If we make the usual assumption that a

human face is approximately a convex Lambertian object [7], then the illumination cone

model is applicable to the face modelling problem. In the context of face recognition,

and restricted to a single image, Basri and Jacobs [2] derived a linear approximation to

the illumination cone introduced in [3]. Their derivation is based on spherical harmonics,

which are the equivalent for the sphere to the Fourier basis on the line or on the plane.



More recently, the problem of modelling the reflectance of a moving object in a video

sequence has also been investigated. Yue et al. [18] studied the problem for a rotating face

and proved that 2D harmonic basis images at different face poses are related by closed-

form linear combinations. Simultaneously Xu and Roy-Chowdhury considered the more

general problem of a translating and rotating object and proved that the set of images can

be approximated by a bilinear subspace consisting of nine illumination and six motion

variables [17]. In this section we extend the work in [18, 17] to the case of static but

deforming objects. When rigid object motion is present, it will be pre-estimated using an

image warping function.

2.1 First order approximation to a deforming object

Let I(x, t) be the matrix storing the image acquired at time t, where x is a vector rep-

resenting the coordinates of a point in the image, and let I(t) be a vector storing the

intensity values of I(x, t). The image I(t) can be linearly modelled with an infinite series

of harmonic images [2],

I(t) = ∑
n

+n

∑
m=−n

lnm(t)bnm(t), (1)

where bnm are the harmonic images and lnm are the illumination coefficients encoding the

direction and intensity of illumination. Let xi = (xi,yi) be the image coordinates of pixel

i. The harmonic image [2] for pixel i can be expressed in terms of n(xi, t), the normal to

the surface of the target at pixel i on time t,

bnm(i, t) = ρ(xi, t)αnYnm(n(xi, t)), (2)

where ρ(xi, t) is the albedo of the 3D point that projects on pixel i at time t, αn is a

coefficient constant for each harmonic of order n andYnm is the surface spherical harmonic

of order n.

The vector I(0) is the reference image of our object and it is chosen as an image with

an arbitrary illumination and deformation. It represents the origin of the reference system

generated by the model illumination and deformation parameters. Let I(t) be another

image acquired at time t. We will show that a first order approximation to I(t) can be

obtained by adding a linear combination of a motion and an illumination linear subspace

to the reference template I(0). The albedo ρ(xi, t) can be linearly approximated as:

ρ(xi, t) = ρ(xi,0)+

[

dρ(x,0)

dx

∣
∣
∣
∣
x=xi

]⊤

︸ ︷︷ ︸

∇xρ(xi,0)

[
dxi

dt

∣
∣
∣
∣
t=0

]

︸ ︷︷ ︸

ẋi

δ t+o(δ t2), (3)

where ẋi is the 2D coordinates change corresponding to each pixel i on the reference

image, due to non-rigid motion at any given time t. Assuming the changes in the normals

due to deformations at each point are small the spherical harmonic function Ynm(n(xi, t)),
may also be linearly approximated as

Ynm(n(xi, t)) = Ynm(n(xi,0))+

[

dYnm(n)

dn

∣
∣
∣
∣
n=n(xi,0)

]⊤

︸ ︷︷ ︸

∇nYnm(n(xi,0)

[

dn(x,0)

dx

∣
∣
∣
∣
x=xi

]

︸ ︷︷ ︸

∇xn(xi,0)

ẋiδ t+o(δ t2).

(4)



This assumption over the normals may introduce estimation errors whenever shape areas

with high curvature change due to deformations, however, considering weak variations

in the normals, itf is generally reasonable for smooth deforming shapes. Now, substi-

tuting equations (3) and (4) into (2) and ignoring higher order terms we get a first order

approximation to bnm(i, t) such that:

bnm(i, t) = ρ(xi,0)αnYnm(n(xi,0))
︸ ︷︷ ︸

bnm(i,0)

+a⊤nm(i)ẋiδ t+o(δ t2), (5)

where a⊤nm(i) is the 1×2 vector modelling the change of albedo and spherical harmonics

(deformation brightness change) at pixel i caused by the deformation of the target and it

is equal to:

a⊤nm(i) = ρ(xi,0)αn∇nYnm(n(xi,0))∇xn(xi,0)+∇xρ(xi,0)αnYnm(n(xi,0)). (6)

The first order approximation to the illumination coefficients may also be expressed as

lnm(t) = lnm(0)+

[
dlnm(t)

dt

∣
∣
∣
∣
t=0

]

︸ ︷︷ ︸

l̇nm(0)

δ t+o(dt2). (7)

From equations (1), (5), (7) and ignoring higher order terms we get a first-order approxi-

mation to the intensity value of pixel i at time t

I(i, t) = ∑
n

+n

∑
m=−n

[lnm(0)bnm(i,0)]+∑
n

+n

∑
m=−n

[
bnm(i,0)l̇nm(0)δ t

]
+

∑
n

+n

∑
m=−n

[

lnm(0)a⊤nm(i)ẋiδ t
]

+o(δ t2) (8)

Now we have to express analytically the image displacement ẋi,0 at each frame. In

our case, since we assume no rigid motion, we have that every pixel displacement is given

only by deformations. This 2D motion is parameterised as a linear combination of basis

shapes Si centered at the initial pixel position xi,0 such that xi,t = xi,0 + Sicd(t) where

each Si is a 2×d matrix and cd is a d×1 vector of deformation coefficients 1. Given this

model, we can relate it to the displacement ẋi,0 in equation (8) such that

ẋi,0δ t = xi,t −xi,0 +o(dt2) = Sicd(t)+o(dt2) (9)

represents a first order approximation to deformations. Similarly, from equation (7), we

approximate the variation of the illumination coefficients as:

l̇mn(0)δ t = lmn(t)− lmn(0)+o(dt2) = ∆lmn(t)+o(dt2) (10)

Finally, substituting equations (9) and (10) into (8) we obtain

I(t) = ∑
n

+n

∑
m=−n

[lnm(0)bnm(0)+∆lnm(t)bnm(0)+ lnm(0)Anmcd(t)]+o(δ t2),

1Notice that the matrix Si represents 2D modes of deformation as similarly expressed by AAMs [6, 12]



︸ ︷︷ ︸

I(t)

=
︸ ︷︷ ︸

I(0)

+c1i,t + . . .+ cmi,t
︸ ︷︷ ︸

Bici,t

+c1d,t + . . .+ c
kd
d,t

︸ ︷︷ ︸

Bdcd,t

Figure 1: A pictorial representation of equation (11)

where

Anm =






a⊤nm(1)S1
...

a⊤nm(N)SN




 , N = size(I(t)),

which can be rewritten in a compact matrix form as

I(t) = I(0)+Bici,t +Bdcd,t . (11)

The first term in equation (11) refers to the reference image, I(0)= ∑n ∑+n
m=−n lnm(0)bnm(0).

The second term models the appearance change of the reference image caused by a

variation in illumination. The vector ci,t = [∆l0,0(t),∆l1,−1(t),∆l1,0(t), . . .]
⊤ encodes the

change of direction and intensity of illumination at time t, whereas the matrix Bi =
[b0,0(0),b1,−1(0),b1,0(0), . . .] represents the illumination basis, which is composed by

the harmonic reference images. Finally, the third term represents the change of target ap-

pearance caused by a deformation. The vector cd,t stores the target shape coefficients and

the matrix Bd = ∑n ∑+n
m=−n lnm(0)Anm models the image changes caused by the deforma-

tion of the target. Notice that equation (11) is an expression of the brightness constancy

equation in the case of a varying illumination and deforming object (see Figure 1).

The dimension of the illumination model is related to the order of the harmonic ap-

proximation. A second order harmonic approximation suffices to represent 97.96% of

the energy in I(t) [2]. Therefore, if we only consider a second order approximation

(n = 0,1,2), the dimension of matrix Bi will be at most nine. On the other hand, Bd
is a set of bases which depends on the modes of deformation and its dimensionality kd
increases with the degrees of non-rigidity of the shape.

Linear models as represented in equation (11) have been used previously in the con-

text of illumination invariant 3D and 2D rigid face tracking. LaCascia et al. [11] intro-

duced a 3D rigid face model, whose constancy equation also had two independent linear

subspaces. Each subspace represented illumination and rigid motion warping templates

respectively. Similarly, Hager and Belhumeur [9] used a 2D rigid face model with a sim-

ilar constancy equation in which a single linear subspace was used to model changes in

illumination. Our model differs from these since the image shape is allowed to deform and

the appearance model is computed in the image plane, rather than the texture map plane,

as is the case of [11]. Like our model, Tenenbaum and Freeman’s [14] and Grimes et

al.’s [8] bilinear models and Vasilescu and Terzopoulos’ multilinear model [16] also rep-

resented variations in illumination and facial expression, but illumination and appearance

are not independent in their models. Buenaposada et al. [5] presented a similar model as-

suming illumination and face deformation subspaces are independent but without giving

a theoretical explanation only giving experimental evidence on the face tracking problem.



(a) (b)

Figure 2: (a) Images used to perform the photometric stereo reconstruction [1]. (b) The

3D surface obtained by integrating the normals at each pixel.

3 Non-rigid motion estimation

The linear approximations introduced in Section 2 leads to the formulation of the bright-

ness constancy equation (11) in which the grey level image variations are a function both

of deformation and lighting changes. In such way, linear basis components computed

using PCA from image observations of a deforming body in varying illumination con-

ditions shows a dimensionality which depends both on the 2D deformable basis Bd and

the spherical harmonics basis Bi. However now the complexity resides in understand-

ing which component from PCA is associated to the varying illumination conditions and

which one to the deformations. Since these components are collapsed into a single pixel

brightness varying through time, such disambiguation may result in a hard problem. On

the other hand, taking for granted that PCAmay directly separate the components as given

in equation (11) is an unrealistic assumption.

Nonetheless there are two evident cases when this problem can be solved. First, when

the image shape is under the effect of varying illumination while the light source is chang-

ing direction and position (photometric stereo, Bdcd,t = costant). Second, when the light

source is fixed and the shape is deforming (2D motion estimation, Bici,t = costant). If

two image sequences are given in such constraints, it is then possible to first estimate the

basis Bi (computing shape normals and albedo) and then to compute the deforming flow

basis Bd given the estimated lighting parameters.

3.1 Photometric Stereo

In order to fully characterise the models expressed in equation (11), we first compute

shape normals n(xi,0) and albedo ρ(xi,0) using an image sequence showing a rigid con-

figuration with varying lighting conditions. The components n(xi,0) and ρ(xi,0) will

then be used to obtain the luminance variations basis as in equation (2) and the anm(i)
deformation brightness change vector as in equation (6) which are needed for the follow-

ing deformable bases estimation. The computation of the normals and the albedo is a

standard photometric stereo problem that can be solved in closed-form and without prior

calibration using Basri and Jacob’s algorithm [1]. Our choice is driven towards this ap-

proach since we want to maintain a calibration-free formulation of our technique. Figure 2

shows the image sequence of a face under varying lighting used for one of the test in the

experimental section. The computed 3D shape is given by the integration of the normal

components and it shows the correctness of the reconstruction.



3.2 A solution for the 2D deformation bases

Once the deformation brightness change vector anm(i) and illumination subspace basis

matrix Bi have been estimated, it is now possible to follow with the computation of the 2D

deformation basis Si. If we have purely deforming motion with fixed lighting condition, it

follows that ci,t = constant since image variations are given exclusively by shape motion.

Thus equation (11) reduces to:

I(t) = I(0)+Bdcd,t . (12)

In order to estimate I(0)we have to choose an image on the deformation training sequence

with the same object configuration (e.g. a neutral face expression). By projecting this

image over the illumination subspace given by Bi we will have the lnm(0) illumination

coefficients necessary to compute I(0). The image residual at each frame Ĩ(t) = I(t)−I(0)
is then expressed as a set of linear bases using PCA analysis giving:

Ĩ(t) = B̃d c̃d,t , (13)

where B̃d is the basis matrix resulting from PCA of the deformation training sequence

and the weights c̃d,t which express the linear combination of the basis shapes. However,

from the previous photometric stereo reconstruction, we partially know the structure of

Bd since it is composed by the given anm(i) and the unknown 2D flow basis Si such that:

Bd = ∑
n

+n

∑
m=−n

lnm(0)Anm = ∑
n

+n

∑
m=−n

lnm(0)






a⊤nm(1)S1
...

a⊤nm(N)SN




 . (14)

Now given anm(i) and the estimated PCA weights c̃d,t we can build a system of linear

equations to solve for the unknown deformation basis S1 . . .SN . For each frame t we can

build a single equation given by:

∑
n

+n

∑
m=−n

lnm(0)c̃Td,t ⊗a⊤nm(i)T si = Ĩ(t) (15)

where si is the vectorization of the 2× kd basis Si (i.e. si = vec(Si) ) and ⊗ represents the

Kronecker product. By stacking row-wise all the equations for each frame we obtain the

overall system:

Hsi = Ĩi (16)

where H is a F×2kmatrix and Ĩi a F-vector that contains the image residuals for the image

point i. The matrix H is rank deficient given the repetitive structure in (15). This shows

that the flow is underconstrained for a single light source. However, under different lights

sources we can build a stacked representation given each single light source contribution

such that:

H̄ =






H1

...

HC




 (17)

whereC is the number of light sources. The Least Squares solution for the system H̄si = Īi
gives the flow basis for pixel i. Now Īi is a (CF)-vector containing the image residuals
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Figure 3: Image displacement estimated from different images. (a) An image from a

64 frames sequence with a smile expression (kd = 3). (b) An image from a 29 frames

sequence with one eye blinking (kd = 3). (b) An image from a 48 frames sequence with

two disgusted expressions (kd = 4).

for each light. As we are dealing with deforming objects we need exactly the same shape

configuration for each light on every training image. The only way of assuring this is to

use a red, a green and a blue filtered lights and RGB images [10]. Each color channel

of the acquired images will be a grey level image with different lighting and exactly the

same shape deformation.

In order to increase estimation robustness, we compute the basis flow around an image

patchW centered on the image pixel i. A positive function, that monotonically declines

with the distance from the patch center, is then used to weigh each pixel in the subwindow.

At the end, the final cost being minimised for each basis is the following sum of LS terms:

argmin
si

∑
p∈W

wp||Hpsi− Īip||
2
2 (18)

where wp is the weight at each pixel p belonging to the subwindow W , Hp are derived

from equation (17) at each pixel p and Īip the relative image residuals.

4 Experiments

Our approach was tested mainly in the case of image faces, with the shape performing

different expression. Our aim was to obtain a description of the varying objects in terms

of both luminance and deformation basis. The first stage using the photometric stereo

[1] computed both the albedo and normals. As already seen in Figure 2 a reasonable

estimation can be obtained with faces even with a small images (the image size for all the

frames in this section is 61×81).

After obtaining the luminance basis, a second sequence showing the face with dif-

ferent facial expressions was used to infer the deformation basis. Here, the subject was

standing still in front of the camera and a rigid registration algorithm was used to compen-

sate for small motions of the subject. The shape was illuminated by three colored lights,

thus we obtained three image sequences for each channel. After performing PCA on the

stacked vectorised images, we used the PCA weights and the anm(i) to build the linear

system as in equation (18) (i.e. C = 3) and solve for the deformation basis. A subwindow

W of 5×5 pixels was used.

We then follow with the computation of the 2D basis shapes by performing a PCA

over the sequences with varying expressions under three different light sources. As it can
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Figure 4: Image displacement estimated from different images. Both sequences have a

smile expression. (a) A 101 frames sequence with (kd = 3). (b) A 21 frames sequence

with (kd = 2).

be seen in Figure 3, at each expression corresponds localized image displacement with an

orientation corresponding to the deformation motion in respect to a neutral face.

Figure 4 presents two further subjects reconstruction showing both a smile expression.

Once again the displacement given the estimated 2D displacement is mostly coherent with

the image motion. The dimension kd of the PCA projection is determined using parallel

analysis [13]. Basically, we compare the covariance matrix of the data with a randomised

version of it to find the amount of eigenvalue inflation due to sampling errors.

5 Conclusions

Our approach is modelling image variations as a set of two independent bases describing

illumination and 2D image coordinates variations. The presented theoretical model led to

the definition of a two-step procedure to compute the bases from video sequences. In such

way we obtain a compact parametrisation of the image shape in the illumination and in the

shape deformation subspaces. As shown in the experiments, the model here introduced

can be readily used for constraining the 2D image variations generated by a deforming

object. Our future work also aims to extend this framework’s theory in order to directly

compute 3D deformation basis and to reduce the 3-color light setup to a single source.

Another challenge remaining is to break the assumption of slight variation in the normals

orientation. This would help modelling the shape areas with high curvature changes due

to deformations.
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