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Abstract

We introduce a subspace representation of face appearance which separates
facial expressions from illumination variations. The appearance of a face
is represented by the addition of two approximately independent linear sub-
spaces modelling facial expressions and illumination respectively. The inde-
pendence assumption notably simplifies the training of the system. We only
require two image sequences. One in which one facial expression is subject
to all possible illuminations and another in which the face,under one illu-
mination, performs all facial expressions. This simple model enables us to
train the system with no manual intervention. We also introduce an efficient
procedure for fitting this model, which can be used for tracking a human face
in real-time.

1 Introduction

Facial expression analysis plays an important role in many computer vision applications
such as advanced human computer interfaces, lip reading, graphical animation or video-
based face recognition. Tracking is generally posed as a minimisation problem. The
tracker tries to minimise the discrepancies between a modeland the actual configuration
of the face in each image of the sequence. Appearance-based tracking approaches rep-
resent the face with a linear model of texture (appearance) variation [2, 10]. Changes
in facial expressions can also be modelled by using linear subspace representations of
facial appearance [6], or linear models of shape+texture such as the 2DActive Appear-
ance Models(AAMs) [5] or the 3DMorphable Models(MMs) [3]. The main drawback
of shape+texture approaches is that they have complex training procedures which often
require manual intervention [4]. On the other hand, appearance-based representations
are again gaining popularity, since there are various procedures for automatically learn-
ing linear [6, 11] subspace models and for probabilistically representing the dynamics of
appearance variation [17, 7].

Factoring out some of the sources of appearance variation isalso a key issue in many
applications. For example, an automated graphical animation system would require the



tracker to separately estimate changes in appearance due tofacial expressions and illu-
mination, so that these changes could be re-targeted in a graphical model. Unfortunately,
automated procedures for learning appearance-based models [6, 13, 11] cannot automat-
ically factor the various sources of appearance variationsrepresented in the model. In
this paper we will introduce a subspace representation of face appearance which can be
automatically trained and which separates facial expressions from illumination variations.

Separating illumination changes from other sources of variations in the appearance of
the face has traditionally been studied for the construction of face recognition systems,
either using subspace [1], or geometrical [8] approaches. Subspace approaches have also
been used to separate multiple orthogonal factors using bilinear [16, 9] or multi-linear [18]
models. These approaches cannot be used in a real-time tracker, either because they were
conceived to analyse a single image [8], to be used in batch processing [16, 18], or because
of the computational requirements of the minimisation procedure [9]. In the appearance
model introduced in section 2 of this paper, a face is represented by the addition of two
independent linear subspaces, one modelling the deformations of the face (facial expres-
sions) and the second one the illumination. By using this model we will be able to train the
system with no manual intervention (see subsection 4.1) andto build a real-time tracker.

Most applications not only require visual tracking algorithms to be robust to changes
in the target appearance, but also to work in real-time. In section 3 we introduce a minimi-
sation procedure which can efficiently fit the previous appearance model to a target image.
It is directly related to the work of Hager and Belhumeur [10], whose tracking procedure
is robust to changes in illumination, but assumes a rigid face. We have extended their
approach to the case in which the target face deforms. In the experiments described in
section 4 we show that, for the model introduced in section 2,our procedure performs
better than the original factorisation approach of Hager and Belhumeur [10] and the more
recent compositional approach of Matthews and Baker [14].

In summary, the main contributions of this paper are: a) we present an appearance-
based model of the face which separates facial expressions from illumination and which
can be automatically trained; b) we introduce an efficient procedure for fitting this model,
which can be used for tracking a face in real-time.

2 The model

In this section we introduce an appearance-based model representing the variations in the
appearance of a face caused by changes in the facial expressions and the illumination of
the scene.

Let I(x, t) be the image acquired at timet, wherex is a vector representing the co-
ordinates of a point in the image, and letI(x, t) be a vector storing the brightness val-
ues of I(x, t). Let us assume that the target moves rigidly (with no deformation) be-
tween time instantst0 andt, and that this motion can be described by the motion model
f (x,µ), beingµ the vector of rigid motion parameters. If there are no changes in the
target appearance caused by the scene illumination, the brightness constancy equation
I( f (x,µ t), t) = I(x, t0) holds. If the face is now allowed to deform non-rigidly, thenwe
may write a new brightness constancy equationI( f (x,µ t), t)− [Bdcd,t ](x) = Īd(x), where
the non-rigid deformations have been modelled by a linear subspace with basisBd, mean
valueĪd(x) and linear deformation parameterscd,t . By [Bdcd,t ](x) we denote the value of



Bdcd,t for the pixel with positionx. Finally, for a given rigid motionµ t and deformation
cd,t , we could also model the illumination of the face by including a new subspace with
basisBi and linear illumination parametersci , which represents all the possible illumina-
tions of the mean facēId(x). So, the final brightness constancy equation is

I( f (x,µ t), t) = Īd(x)+ [Bici,t ](x)+ [Bdcd,t ](x) = Īd(x)+ [Bct ](x) ∀x ∈ F , (1)

whereB = [Bi |Bd ], c⊤t = (c⊤i,t ,c
⊤
d,t)

⊤, k = dim(ct), andF represents the set of pixels of
the face used for tracking. Vectorsci andcd are respectively the illumination and the
deformation appearance parameters. The assumption that illumination and deformation
subspaces are independent will simplify the training of themodel: instead of having to
use image sequences in which all combinations of illuminations and facial expressions are
present, we will only have to process two image sequences, one with one facial expression
and all illuminations and another with one illumination andall facial expressions (see
section 4.1).

In order to validate the previous model we made the followingexperiment. First we
trained it according to the procedure described in section 4.1. Then we manually selected
the parameters of two facial expressions and two illuminations, and generated a set of
intermediate illuminations and expressions by uniformly sampling the parameter space
between those locations. We have repeated this process three times. The results are shown
in Fig. 1. In spite of the linearity of the model, it correctlygenerates the appearance of
the faces.

(a) (b) (c)

Figure 1: Images generated using our appearance model; (a) From left to right images
generated falling eyebrows, and from top to down images generated varying illumination;
(b) Now rotating eyes with a different illumination; (c) Nowclosing the mouth using an
illumination different from the previous ones.

3 Efficient tracking

Tracking a face consists of estimating, for each image in thesequence, the values of the
motion,µ, and appearance,c, parameters which minimise the error function

E(µ,c) = ||I( f (x,µ t), t)− Īd − [Bct ](x)||2. (2)



In order to robustly estimate the minimum value of (2), the quadratic error norm can be
replaced by a robust one (e.g. see [10]).

In general, minimising (2) can be a difficult task as it definesa non-convex cost func-
tion. Black and Jepson [2] presented an iterative solution by using a gradient descent
procedure and a robust metric with increasing resolution levels. Their algorithm is not
suitable for real-time performance, since, for example, the Jacobian of each incoming
image has to be computed once on every frame for each level in the multi-resolution
pyramid. Similar problems have been solved efficiently using Gauss-Newton minimi-
sation [10, 14]. Hager and Belhumeur [10], in the context of invariance to illumination
changes, introduced an efficient procedure for minimising (3) by assuming∇x[Bc](x)≈ 0.
This assumption is valid approximation when modelling the illumination of a rigid head,
but it cannot be reliably used for tracking faces whose appearance changes due to causes
other than illumination (see section 4). In this section we will introduce an efficient pro-
cedure for minimising (2) without such restriction.

In order to make Gauss-Newton iterations, a Taylor series expansion ofI at (µ t ,ct , t)
is performed, producing a new error function

E(δ µ,δc) = ||Mδ µ + I( f (x,µ t), t +δ t)− Īd −B(ct +δc)||2, (3)

whereM =

[

∂ I( f (x,µ),t)
∂ µ

∣

∣

∣

µ=µt

]

is theN×n (n = dim(µ)) Jacobian matrix ofI .

3.1 Jacobian matrix factorisation

One of the obstacles for minimising (3) online, while tracking, is the computational cost
of estimatingM for each frame. In this subsection we will show thatM can be factored
into the product of two matrices,M0Σ(µ,c), whereM0 is a constant matrix, which can be
computed off-line.

Each rowmi(µ t ,ct) of M(µ t ,ct) can be written as the product,

mi(µ t ,ct) = ∇f I( f (xi ,µ t), t)
⊤ fµ(xi ,µ t). (4)

where∇f I( f (xi ,µ t), t)
⊤ =

[

∂ I(y,t)
∂y

∣

∣

∣

y= f (xi ,µt )

]

and fµ(xi ,µ t) =

[

∂ f (xi ,µ)
∂ µ

∣

∣

∣

µ=µt

]

. Taking

derivatives w.r.t.x on both sides of (1) we get

∇f I( f (xi ,µ t), t)
⊤ fx(xi ,µ t) = ∇x Īd(x)+∇x[Bct ](x), (5)

where fx(xi ,µ t) =

[

∂ f (x,µt )
∂x

∣

∣

∣

x=xi

]

and∇x denotes the image gradient. Finally, from (4)

and (5) we get a new expression forM,

M(µ,c) =







B∇(x1)C fx(x1,µ)−1 fµ(x1,µ)
...

B∇(xN)C fx(xN,µ)−1 fµ(xN,µ)






, (6)

whereB∇ is the gradient of the subspace basis vector andC is a matrix storingc. Therefore
M can be expressed in terms of the gradient of the subspace basis vectors,B∇, which are
constant, and the motion and appearance parameters (µ,c), which vary over time. If we



choose a motion modelf such thatC fx(xi ,µ)−1 fµ(xi ,µ) = Γ(xi)Σ(µ,c), thenM can be
factored into

M(µ,c)=







B∇(x1)Γ(x1)
...

B∇(xN)Γ(xN)






Σ(µ,c)=M0Σ(µ,c), (7)

whereM0 is constant matrix andΣ depends onc andµ .

3.2 Minimising E(µ ,c)

The minimum of (3) can be estimated by least-squares[δ µ δc]⊤ =−(M⊤J MJ)
−1
MJE , where

MJ = (M|−B) andE = I( f (x,µ t), t +δ t)− Īd−Bct . Then,δ µ =−(M⊤NBM)
−1
M
⊤
NBE and

δc= (B⊤NMB)
−1
B
⊤
NME , whereNB = I−B(B⊤B)−1

B
⊤ andNM = I−M(M⊤M)−1

M
⊤. Since

NB is a constant matrix, we get an efficient solution forδ µ factoringM according to (7)

δ µ = −(Σ⊤ΛM1Σ)
−1
Σ
⊤
ΛM2E , (8)

whereΛM1 = M
⊤
0 NBM0 andΛM2 = M

⊤
0 NB are constant and can be precomputed off-line. A

similar solution forδc would not be efficient, sinceNM depends on(µ,c) and would have
to be recomputed for each frame in the sequence. Nevertheless, an efficient solution can
be obtained from (3) by least-squares, considering thatδ µ is known

δc = ΛB[Mδ µ +E ], (9)

whereΛB = (B⊤B)−1
B
⊤ is also constant and can be precomputed off-line.

At first glance this result may seem similar to the one presented in [14], section
4.1, and in [10]. There are nevertheless three major differences: a) here model param-
eters are additively updated, whereas in [14] the update procedure is compositional; b)
here subspace appearance parameters are incrementally estimated and additively updated
(ct+1 = δc+ct) and, in consequence,E includes a−Bct term, whereas in [14], as well as
in [10], there is no such term; c) here the derivatives of the subspace basis are part of the
Jacobian, whereas in [14] and in [10] they are not. As described in [10], this implies that
assumption∇x[Bc](x)≈ 0. This assumption is approximately true for a rigid face, but not
for a face whose appearance changes. In the experiments conducted in section 4 we show
that for our problem the procedure introduced in this section performs better than those
in [10] and [14].

3.3 The algorithm

In the implementation of our algorithm we use a modular eigenspace [15]. This allows a
more flexible, compact, accurate and better conditioned model of the regions of interest.
We will consider that all the regions are part of the same object and hence that they share
the sameδ µ but could have different appearance variations.

Let {B1, · · · ,Br} be the set of subspace basis for all modules. Given the reconstructed
image for all pixels in regionj, [B jc j ](x), the Jacobian matrix of the modular appearance
tracker can be written as:

M =







M0,1Σ1(µ t ,c1)
...

M0,rΣr(µ t ,cr)






,



whereM0, j andΣ j are the factorisation result for the Jacobian matrix corresponding to
region j. Finally, the factored modular tracking algorithm is as follows:

• Off-line:
1. For each regionj do:

a) Compute and storeM0, j usingB j .
b) Compute and storeΛM2, j = M

⊤
0, jNB j .

c) Compute and storeΛM1, j = ΛM2, jM0, j .
d) Compute and storeΛB, j = (B⊤j B j )

−1
B
⊤
j .

• Online (one iteration):
1. For each regionj do:

a) WarpI(z, t +δ t) to I( f (x,µt), t +δ t).
b) ComputeE j =[I( f (x,µt), t +δ t)− Id −B jc j,t ].
c) ComputeΣ j (µt ,ct, j ).
d) ComputeH j = Σ(µt ,ct, j )

⊤
ΛM1, jΣ(µt ,ct, j ).

e) ComputeA j = Σ(µt ,ct, j )
⊤
ΛM2, jE j .

2. ComputeH = ∑r
j=1H j .

3. ComputeA = ∑r
j=1A j .

4. Computeδ µ = −H−1
A.

5. Updateµt+δ t = µt +δ µ.

6. For each regionj do:
a) Computeδc j,t+δ t = ΛB, j [M0, j Σ(µt ,ct, j )δ µ +E j ].
b) Updatec j,t+δ t = c j,t +δc j,t+δ t .

4 Experiments

In this section we will show some experiments that validate the model and the fitting algo-
rithm introduced in the paper. We will use an RTS (rotation, translation and scale) motion
model, soµ = (θ , tu, tv,s), and f (x,µ) = sR(θ)x+ t, wherex = (u,v)⊤, t = (tu, tv)⊤ and
R(θ) is a 2D rotation matrix. In this case the factorisation in (7)results in

Γ(xi) =

[

I2l×2l ,

[

−viIl×l uiIl×l

uiIl×l viIl×l

] ]

, Σ(c,µ) =





C
1
sR(−θ) 0

0 C

[

1 0
0 1

s

]





,

whereId×d is thed×d identity matrix,C is a matrix storingc andl = k+1, beingk the
dimension of the linear subspace. For this modelM0 andΣ have dimensionsN×4l and
4l ×4 respectively.

4.1 Model building.

One of the advantages of the appearance model introduced in section 2 is that deformation
and illumination subspaces are independent, and so, they can be independently trained.
This allows us to simplify the training process. We do not need image sequences with
all facial expressions under all possible illumination conditions. Now, each subspace is
trained with one video sequence. For the illumination subspace we use a sequence in
which a light orbits in front of the target face with a neutralexpression. For the defor-
mation subspace we use a sequence captured with a non-saturating frontal illumination



in which the target face performs different facial expressions. The face is located and
aligned in the first frame of both sequences, then, with a procedure similar to the one
described in [11], both sequences are independently tracked and both linear subspace
models independently built (see Fig. 2).

Figure 2: Some images used to build the deformation (first four images) and illumination
(last four images) subspaces.

4.2 Tracking experiments.

In the first experiment we compare the performance of our model fitting procedure with
the algorithms introduced in [10] and [14]. To this end we generate synthetic image
sequences with a graphical face model and use the RMS of the frame reconstruction
error, I( f (x,µ t+δ t), t + δ t)− [Bct+δ t ](x), as performance index. We have rendered three
test sequences, SM (sequence with rigid head motion), SME (sequence with the same
motion as in SM and some facial expressions) and SMIE (sequence with the same rigid
motion and facial expressions as in SME but with a light orbiting around the face). For
model training we have rendered two additional sequences with different expressions and
similar illumination variations to the testing ones. The resultant illumination subspace
has dimension 5 for the mouth region (45×45 pixels), 5 for the left eye (30×35 pixels)
and 5 for the right eye area (30×35 pixels). The deformation subspace has dimension
7 for the mouth area and 10 for each eye region. When tracking the SM sequence all
three approaches have equal performance (see Fig.3 left). When facial expressions are
strong enough, the assumption∇x[Bc](x) ≈ 0 becomes invalid and the performance of
our tracker is better. This is shown in the SME sequence (Fig.3 centre) between frames
300 and 400 in which strong eye and eyelid expressions are performed. When motion,
facial expressions and strong illumination changes are combined, the only tracker that
performs correctly is the one introduced in this paper (see Fig. 3 right).
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Figure 3: Comparison of Hager & Belhumeur [10], Matthews & Baker [14] and our model
fitting procedure.

In the second experiment we use real image sequences acquired with an Apple iSight
camera. This time the illumination subspace has dimension 5for the mouth region
(23×23 pixels), 5 for the left eye (15×18 pixels) and 5 for the right eye area (15×18



pixels). The deformation subspace has dimension 18 for the mouth area and 8 and 9
for the eye regions. With this model our tracker runs at 40 fps(including the reading
of images from disk and displaying the results on screen) with an unoptimised C++ im-
plementation on a Pentium-M Sonoma 1.83GHz. In Fig. 4 we showthe tracking results
for a test sequence in which the face performs non-rigid motion with drastic illumina-
tion changes. This test sequence is different from the one used for training (in Fig. 2
are shown some sample images from the training sequence). The illumination conditions
are modified by moving a light source in front of the user, withfluorescent roof lights
on. The estimated position of the face is overlayed in red (a rectangle for each module
tracked). To the right side of each result image we show four smaller images: the rectified
images of the three regions used in tracking (I( f (x,µ t), t +δ t)) on the left-upper side, the
reconstructed images (Id, j(x)+ [Bi, jci,t, j ](x)+ [Bd, jcd,t, j ](x)) on the right-upper side, the
illumination reconstructed images (Id, j(x)+ [Bi, jci,t, j ](x)) on the left-lower side and the
deformation reconstructed images (Id, j(x)+ [Bd, jcd,t, j ](x)) on the right-lower side. The
tracker is locked on the face trough all the 966 frames of the experiment.

Figure 4: Real tracking experiment .

The rectified images give us an idea of how robust the tracker is to the changes in the
appearance throughout the sequence. The performance in terms of robustness is almost
perfect. The images reconstructed with the illumination and deformation models inform
us about how well each source of appearance is separated during tracking. Here again the
performance is remarkable, given that the illumination subspace accurately estimates the
changes in the illumination of the scene and the deformationsubspace represents the facial
expression. Occasionally, the images reconstructed with the deformation model show
“ghost” expressions. These are caused by facial expressions not present in the training
sequence, because we are approximating with a linear subspace the manifold of facial
expressions which is non-linear. Finally, the image reconstructed with both models gives
us information on how good our model reconstructs the targetimage. Here, again, the
reconstruction is good, except for those expressions not present in the training sequence.

In the third experiment we compare the accuracy (RMS residual) when tracking the
sequence shown in Fig. 4 with and without each of the subspaces in the appearance model.
With this experiment we will establish the contribution of each subspace to the tracking
process. In Fig. 5 (a) we show the RMS residual for the left eyeregion. The tracker using
deformations and illumination subspaces (TIE) performs consistently better than those in-
cluding only illumination (TI) or deformations (TE). Sincethe appearance changes caused
by the illumination are more significant than those due to facial expressions the perfor-
mance of the TE tracker is much worse than the others and eventually looses track. Al-



though the illumination subspace alone can successfully track the sequence, it can not
explain all the appearance variations. That is why its residual is higher than the one ob-
tained with the whole appearance model (TIE).
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Figure 5: (a) Contribution of each subspace to the tracking process. (b) Algorithm per-
formance.

In the last experiment we evaluate the performance of the tracker in a real sequence
with models of different size and in various personal computers. Best performances are
obtained when all data structures used in the algorithm fit inthe cache memory of the
processor. As shown in Fig. 5 (b), the performance quickly degrades as the model size
increases. Themodel sizeis the number of pixels per region times the number of basis
per region times the number of regions. We have tested our algorithm on an Athlon XP
2500+ (AXP2005), Pentium 4 2.4 GHz (P42.4), Pentium 4 3.2 GHz (P43.2) and on a
Pentium-M Sonoma 1.86 GHz (PM1.85).

5 Conclusions

An important issue in facial expression analysis is developing easy-to-train, efficient and
robust tracking algorithms, which can factor some of the various sources of appearance
variation in the face. In this paper we have introduced a linear subspace representation
of facial appearance which separates facial expressions from illumination variations. The
appearance of a face is represented by the addition of two independent linear subspaces,
one modelling the facial expressions and the other modelling the illumination. To our
knowledge, this model is new. In the context of 3D and 2D rigidface tracking invariant
to illumination changes, LaCascia [12] (3D face model) and Hager [10] (2D face model)
had also used a single linear subspace to model changes in illumination. In this paper we
have shown that an independent illumination and deformation subspace may also be used
for fitting an eigenface (i.e. a non-rigid 2D appearance-based model of a face). Vasilescu
and Terzopoulos [18] also used a linear model to represent variations in the illumination
and appearance of an eigenface, but in their multi-linear tensor model illumination and
appearance are not independent. In this paper we have shown that they can be assumed
to be approximately independent. This assumption notably simplifies the training of the
model, which can be made with no manual intervention. We havealso introduced an
efficient model fitting algorithm, which is able to track a deforming face in real-time and
which performs better than the two other most prominent efficient tracking algorithms.

The ideas presented in this paper could also be applied to other areas of interest in
computer vision. For example, if in our training data we exchange facial expression for



identity, the tracker could also be used for video-based recognition.
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