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Abstract

We introduce a subspace representation of face appeardmcie separates
facial expressions from illumination variations. The agaace of a face
is represented by the addition of two approximately indéeeenlinear sub-
spaces modelling facial expressions and illuminationeetyely. The inde-
pendence assumption notably simplifies the training of yiséesn. We only

require two image sequences. One in which one facial expresssubject

to all possible illuminations and another in which the fageder one illu-

mination, performs all facial expressions. This simple piazhables us to
train the system with no manual intervention. We also inticedan efficient
procedure for fitting this model, which can be used for traglka human face
in real-time.

1 Introduction

Facial expression analysis plays an important role in mamypaiter vision applications
such as advanced human computer interfaces, lip readiaghigal animation or video-
based face recognition. Tracking is generally posed as amisiation problem. The
tracker tries to minimise the discrepancies between a nattéthe actual configuration
of the face in each image of the sequence. Appearance-bashthy approaches rep-
resent the face with a linear model of texture (appearanaeation [2, 10]. Changes
in facial expressions can also be modelled by using linebsEace representations of
facial appearance [6], or linear models of shape+textuch a3 the 2DActive Appear-
ance ModelgAAMS) [5] or the 3D Morphable ModelfMMs) [3]. The main drawback
of shape+texture approaches is that they have complexrgammocedures which often
require manual intervention [4]. On the other hand, appesrdased representations
are again gaining popularity, since there are various phaes for automatically learn-
ing linear [6, 11] subspace models and for probabilisticadbresenting the dynamics of
appearance variation [17, 7].

Factoring out some of the sources of appearance variataeasa key issue in many
applications. For example, an automated graphical animatystem would require the



tracker to separately estimate changes in appearance daeidabexpressions and illu-
mination, so that these changes could be re-targeted irphiged model. Unfortunately,
automated procedures for learning appearance-based$j6d&B, 11] cannot automat-
ically factor the various sources of appearance variatiepgesented in the model. In
this paper we will introduce a subspace representationoaf &pearance which can be
automatically trained and which separates facial exppasdrom illumination variations.

Separating illumination changes from other sources oftiaris in the appearance of
the face has traditionally been studied for the constraatibface recognition systems,
either using subspace [1], or geometrical [8] approacheksi@ce approaches have also
been used to separate multiple orthogonal factors usimgehil [16, 9] or multi-linear [18]
models. These approaches cannot be used in a real-timeitratker because they were
conceived to analyse a single image [8], to be used in batdepsing [16, 18], or because
of the computational requirements of the minimisation pthae [9]. In the appearance
model introduced in section 2 of this paper, a face is reptesieby the addition of two
independent linear subspaces, one modelling the defansatif the face (facial expres-
sions) and the second one the illumination. By using thisehae will be able to train the
system with no manual intervention (see subsection 4.1j@hdild a real-time tracker.

Most applications not only require visual tracking alganiis to be robust to changes
in the target appearance, but also to work in real-time. ¢ti@e 3 we introduce a minimi-
sation procedure which can efficiently fit the previous appeee model to a target image.
It is directly related to the work of Hager and Belhumeur [Mose tracking procedure
is robust to changes in illumination, but assumes a rigie.fad/e have extended their
approach to the case in which the target face deforms. Inxpernents described in
section 4 we show that, for the model introduced in sectioou,procedure performs
better than the original factorisation approach of HagerBelhumeur [10] and the more
recent compositional approach of Matthews and Baker [14].

In summary, the main contributions of this paper are: a) ves@nt an appearance-
based model of the face which separates facial expressiomsifumination and which
can be automatically trained; b) we introduce an efficientpdure for fitting this model,
which can be used for tracking a face in real-time.

2 The model

In this section we introduce an appearance-based modelsaqing the variations in the
appearance of a face caused by changes in the facial expressid the illumination of
the scene.

Let I(x,t) be the image acquired at timewherex is a vector representing the co-
ordinates of a point in the image, and I€k,t) be a vector storing the brightness val-
ues ofl(x,t). Let us assume that the target moves rigidly (with no defdiona be-
tween time instantt andt, and that this motion can be described by the motion model
f(x,u), being u the vector of rigid motion parameters. If there are no charigehe
target appearance caused by the scene illumination, thhthéss constancy equation
[(f(x,H),t) =1(X,to) holds. If the face is now allowed to deform non-rigidly, thea
may write a new brightness constancy equatidix, 1 ),t) — [ByCqt](X) = l4(X), where
the non-rigid deformations have been modelled by a linebssace with basiBy, mean
valuely(x) and linear deformation parametexs. By [ByCq1](X) we denote the value of



BqCq for the pixel with positiorx. Finally, for a given rigid motioru; and deformation
Cdqt, we could also model the illumination of the face by incluglimnew subspace with
basisB; and linear illumination parametecs which represents all the possible illumina-
tions of the mean facky(x). So, the final brightness constancy equation is

H(F (% ) t) = Q(X) +[Bicit)(X) + [BaCar) () = 1a(X) + [Be] () vxe .7, (1)

whereB = [Bj|By], & (c,Tt,cdl)T, k =dim(c), and.Z represents the set of pixels of
the face used for tracklng Vectocs and cy are respectively the illumination and the
deformation appearance parameters. The assumptionltirairiation and deformation
subspaces are independent will simplify the training ofrtieel: instead of having to
use image sequences in which all combinations of illumamstiand facial expressions are
present, we will only have to process two image sequencesyith one facial expression
and all illuminations and another with one illumination aaiti facial expressions (see
section 4.1).

In order to validate the previous model we made the follonerpgeriment. First we
trained it according to the procedure described in sectibn®hen we manually selected
the parameters of two facial expressions and two illumameti and generated a set of
intermediate illuminations and expressions by uniformdyngpling the parameter space
between those locations. We have repeated this procesditimes. The results are shown
in Fig. 1. In spite of the linearity of the model, it correctignerates the appearance of
the faces.
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Figure 1: Images generated using our appearance modelrdia) [Eft to right images
generated falling eyebrows, and from top to down imagesngéee varying illumination;
(b) Now rotating eyes with a different illumination; (c) Naslosing the mouth using an
illumination different from the previous ones.

3 Efficient tracking

Tracking a face consists of estimating, for each image irstitgience, the values of the
motion, i, and appearance, parameters which minimise the error function

E(1,¢) = [I1(F(x ), t) —Ta — [Be] ()]> @)



In order to robustly estimate the minimum value of (2), thadpatic error norm can be
replaced by a robust one (e.g. see [10]).

In general, minimising (2) can be a difficult task as it define®n-convex cost func-
tion. Black and Jepson [2] presented an iterative solutypmuding a gradient descent
procedure and a robust metric with increasing resolutigalée Their algorithm is not
suitable for real-time performance, since, for example, Xacobian of each incoming
image has to be computed once on every frame for each levkeimulti-resolution
pyramid. Similar problems have been solved efficiently ggBauss-Newton minimi-
sation [10, 14]. Hager and Belhumeur [10], in the contextnefiriance to illumination
changes, introduced an efficient procedure for minimis&)dpy assumingdly[Bc](x) ~ 0.
This assumption is valid approximation when modelling thamination of a rigid head,
but it cannot be reliably used for tracking faces whose ape changes due to causes
other than illumination (see section 4). In this section vikkimtroduce an efficient pro-
cedure for minimising (2) without such restriction.

In order to make Gauss-Newton iterations, a Taylor seripamsion ofl at (1;,C,t)
is performed, producing a new error function

E(81,6¢) = |[MSp -+ 1 ( (X, k), t+ 8t) — g — B(G + &¢)| 2, (3)

_ | adxm,
whereM = [%

’ } is theN x n (n = dim(u)) Jacobian matrix of.
H=H¢

3.1 Jacobian matrix factorisation

One of the obstacles for minimising (3) online, while tramkiis the computational cost
of estimatingM for each frame. In this subsection we will show tiatan be factored
into the product of two matriceslpz(u,c), whereM is a constant matrix, which can be
computed off-line.

Each rowm (1, c;) of M(l,,ct) can be written as the product,

m (K, €)= O (F (O, 1), t) T Fu (i, 1) (4)
here Dl ( (x; T |2y fo(xi. ) = | 2fim) . Taki
whereUs! (f(xi, 4¢),t) dy ’y=f(xi,ut) and fy (i, ty) on ‘H=u1 aking
derivatives w.r.tx on both sides of (1) we get
Cgl (f(XhUt)vt)fo(XivlJt) = Dxl_d(x) + Ox[Bct] (%), ©)
where fy (i, 1) = % } andy denotes the image gradient. Finally, from (4)
X=X

and (5) we get a new expression fgr

B (x1)C fx(xa, )~y (Xa, 1)
M(p,c) = : : (6)
B (Xn)C (X, 1) ™ (X, 1)
whereBp is the gradient of the subspace basis vectorGisd matrix storing. Therefore

M can be expressed in terms of the gradient of the subspaceJeeasorspg, which are
constant, and the motion and appearance parametety (vhich vary over time. If we



choose a motion moddl such thatC fy(x;, 1)~ (xi, 1) = [ (xi)=(y,c), thenM can be
factored into
Br(X1)T'(X1)
M(ch): Z(ch):MOZ(IJ»C)a (7)
Bo(Xn)T(XN)
whereM is constant matrix and depends o and .

3.2 Minimising E(u,c)

The minimum of (3) can be estimated by least-squeygsic] " = —(Mj M) ~M;&, where
My = (M| —B) and& = I (f(x, l;),t +6t) — g —Bcr. Then,ou = —(M"NgM)~ 1M Ng& and
dc= (B'NuB)1B'Nm&, whereNg = I—B(B'B) BT andNy = I —M(M'M)~IM". Since
Ng is a constant matrix, we get an efficient solution &qr factoringM according to (7)

Su=—(="aviz) 2T am2é, (8)

whereAy = MJNBMO andip, = MSNB are constant and can be precomputed off-line. A
similar solution fordc would not be efficient, sinci depends oriy, c) and would have

to be recomputed for each frame in the sequence. Neverthalefficient solution can
be obtained from (3) by least-squares, consideringdipaits known

5¢= Ap[MoU + &7, 9)

whereng = (B'B) BT is also constant and can be precomputed off-line.

At first glance this result may seem similar to the one preskim [14], section
4.1, and in [10]. There are nevertheless three major diffsge: a) here model param-
eters are additively updated, whereas in [14] the updateepitore is compositional; b)
here subspace appearance parameters are incremeniafigtedtand additively updated
(ctr1 = ¢+ ) and, in consequencd, includes a—Bc; term, whereas in [14], as well as
in [10], there is no such term; c) here the derivatives of titespace basis are part of the
Jacobian, whereas in [14] and in [10] they are not. As desdrib [10], this implies that
assumptioridk[Bc](x) = 0. This assumption is approximately true for a rigid face,rmt
for a face whose appearance changes. In the experimentsateddn section 4 we show
that for our problem the procedure introduced in this sectierforms better than those
in [10] and [14].

3.3 The algorithm

In the implementation of our algorithm we use a modular espaxe [15]. This allows a
more flexible, compact, accurate and better conditionedeinafthe regions of interest.
We will consider that all the regions are part of the sameailgad hence that they share
the same& 1 but could have different appearance variations.

Let {B1,---,Br} be the set of subspace basis for all modules. Given the reootex
image for all pixels in regiorj, [Bjc;j](x), the Jacobian matrix of the modular appearance
tracker can be written as:

Mo1Z1 (¢, Ca)

MorZr (U, Cr)



whereMpj andz; are the factorisation result for the Jacobian matrix cgwesing to
regionj. Finally, the factored modular tracking algorithm is addais:

o Off-line:
1. For each regiotj do:
a) Compute and stoid j usingB;.
b) Compute and storkz j = Mg N,
c) Compute and storgyv1,j = Am2,jMo,j-
d) Compute and storks j = (B/ Bj) 'B] .

e Online (one iteration):
1. For each regiot do:
a) Warpl(z,t+0t) tol(f(x, u;),t+ ot).
b) Computes;=[I(f(x, )t +t) — g —BjCj].
c) Computerj (i, G, j)-
d) Computetj = E(p,¢,j) " AmriE(Hy, @ )-
e) Computel; = Z(Hg, Cj) T A2,
Compute = Zg:lHJ'
Computed = 3, Aj.
Computedu = —H 1A,
Updateu; 5 = Hi + OH-
For each region do:
a) ComputeSch& = A,j[Mo,jZ(Hy,Ct ) OM + &j).
b) Updat&‘,j’tJr& =Cjt+ 6Cj,t+5t'

ok W

4 Experiments

In this section we will show some experiments that validagenhodel and the fitting algo-
rithm introduced in the paper. We will use an RTS (rotatioanslation and scale) motion
model, sou = (0,ty,ty,s), and f (x, i) = sR(O)x +t, wherex = (u,v) ", t = (t,,t,) " and
R(6) is a 2D rotation matrix. In this case the factorisation inr@gults in

cir(-06 0
Vil ULk sR(=0)

P(xi) = [ Tl { Ui Vilix } }’ Z(CH) = 0 C[é g] ’

wherelgy.q is thed x d identity matrix,C is a matrix storingc andl = k+ 1, beingk the
dimension of the linear subspace. For this magiedndx have dimensionsl x 41 and
4| x 4 respectively.

4.1 Model building.

One of the advantages of the appearance model introducedtinrs 2 is that deformation

and illumination subspaces are independent, and so, thepe@ndependently trained.
This allows us to simplify the training process. We do notchemage sequences with
all facial expressions under all possible illumination ditions. Now, each subspace is
trained with one video sequence. For the illumination sabspwye use a sequence in
which a light orbits in front of the target face with a neuteajpression. For the defor-

mation subspace we use a sequence captured with a nontisgtdirantal illumination



in which the target face performs different facial expressi The face is located and
aligned in the first frame of both sequences, then, with aquloe similar to the one
described in [11], both sequences are independently tiaakd both linear subspace
models independently built (see Fig. 2).

EACIEICITNEY ENEN

Figure 2: Some images used to build the deformation (firstifoages) and illumination
(last four images) subspaces.

4.2 Tracking experiments.

In the first experiment we compare the performance of our ifittieg procedure with

the algorithms introduced in [10] and [14]. To this end we gate synthetic image
sequences with a graphical face model and use the RMS of d@ingefreconstruction
error, | (f(x, Uy s ),t + Ot) — [BCry5t) (X), @as performance index. We have rendered three
test sequences, SM (sequence with rigid head motion), SM&uénce with the same
motion as in SM and some facial expressions) and SMIE (segueith the same rigid
motion and facial expressions as in SME but with a light angitaround the face). For
model training we have rendered two additional sequencisdifferent expressions and
similar illumination variations to the testing ones. Theukant illumination subspace
has dimension 5 for the mouth region (445 pixels), 5 for the left eye (3035 pixels)
and 5 for the right eye area (335 pixels). The deformation subspace has dimension
7 for the mouth area and 10 for each eye region. When trackimgM sequence all
three approaches have equal performance (see Fig.3 leften\fdcial expressions are
strong enough, the assumpti@i[Bc](x) ~ 0 becomes invalid and the performance of
our tracker is better. This is shown in the SME sequence Figntre) between frames
300 and 400 in which strong eye and eyelid expressions aferpexd. When motion,
facial expressions and strong illumination changes arebawed, the only tracker that
performs correctly is the one introduced in this paper (3ge3right).

SM - Left eye region SME - Left eye region SMIE - Left eye region
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Figure 3: Comparison of Hager & Belhumeur [10], Matthews &Big[14] and our model
fitting procedure.

In the second experiment we use real image sequences atgitinean Apple iSight
camera. This time the illumination subspace has dimensidor 3he mouth region
(23x 23 pixels), 5 for the left eye (1618 pixels) and 5 for the right eye area {158



pixels). The deformation subspace has dimension 18 for thethmarea and 8 and 9
for the eye regions. With this model our tracker runs at 40(ipsluding the reading
of images from disk and displaying the results on screer) wit unoptimised C++ im-
plementation on a Pentium-M Sonoma 1.83GHz. In Fig. 4 we gheviracking results
for a test sequence in which the face performs non-rigid enotiith drastic illumina-
tion changes. This test sequence is different from the oed t@ training (in Fig. 2
are shown some sample images from the training sequencejlldinination conditions
are modified by moving a light source in front of the user, Witlorescent roof lights
on. The estimated position of the face is overlayed in redg¢angle for each module
tracked). To the right side of each result image we show fmaller images: the rectified
images of the three regions used in trackind (x, 1, ),t + dt)) on the left-upper side, the
reconstructed images$y(j (X) + [Bi,jCit,j](X) + [Bd,jCdy,jl (X)) on the right-upper side, the
illumination reconstructed imagek; §(x) + [Bj,jCit.j|(x)) on the left-lower side and the
deformation reconstructed imageg j((X) + [Bq,jCd.,j] (X)) on the right-lower side. The
tracker is locked on the face trough all the 966 frames of ¥peement.

Figure 4: Real tracking experiment .

The rectified images give us an idea of how robust the traskierthe changes in the
appearance throughout the sequence. The performanceria térobustness is almost
perfect. The images reconstructed with the illuminatiod daformation models inform
us about how well each source of appearance is separateg) diatking. Here again the
performance is remarkable, given that the illuminationspatze accurately estimates the
changes in the illumination of the scene and the deformatitaspace represents the facial
expression. Occasionally, the images reconstructed Wwahdeformation model show
“ghost” expressions. These are caused by facial expressionpresent in the training
sequence, because we are approximating with a linear stibbs¢pa manifold of facial
expressions which is non-linear. Finally, the image retroged with both models gives
us information on how good our model reconstructs the targage. Here, again, the
reconstruction is good, except for those expressions @sepit in the training sequence.

In the third experiment we compare the accuracy (RMS refiduzen tracking the
sequence shown in Fig. 4 with and without each of the subspadtlee appearance model.
With this experiment we will establish the contribution afch subspace to the tracking
process. In Fig. 5 (a) we show the RMS residual for the leftregéon. The tracker using
deformations and illumination subspaces (TIE) performssgiently better than those in-
cluding only illumination (TI) or deformations (TE). Sintee appearance changes caused
by the illumination are more significant than those due téafaexpressions the perfor-
mance of the TE tracker is much worse than the others andwalgntooses track. Al-



though the illumination subspace alone can successfulktthe sequence, it can not
explain all the appearance variations. That is why its tesdits higher than the one ob-
tained with the whole appearance model (TIE).

Left eye region Performance experiment

-0-AXP_2500
A-P4_24
—P4_32

+-PM_1.85

RMS residual

200 400 600 800 0
frame #

(@) (b)

Figure 5: (a) Contribution of each subspace to the trackioggss. (b) Algorithm per-
formance.

In the last experiment we evaluate the performance of tlukeéran a real sequence
with models of different size and in various personal corapit Best performances are
obtained when all data structures used in the algorithm fihencache memory of the
processor. As shown in Fig. 5 (b), the performance quicklyraées as the model size
increases. Thenodel sizas the number of pixels per region times the number of basis
per region times the number of regions. We have tested ooriddgh on an Athlon XP
2500+ (AXP2005), Pentium 4 2.4 GHz (P2.4), Pentium 4 3.2 GHz (P3.2) and on a
Pentium-M Sonoma 1.86 GHz (PM85).

5 Conclusions

An important issue in facial expression analysis is devialppasy-to-train, efficient and
robust tracking algorithms, which can factor some of theower sources of appearance
variation in the face. In this paper we have introduced aalirsubspace representation
of facial appearance which separates facial expressionsiftumination variations. The
appearance of a face is represented by the addition of tvepartient linear subspaces,
one modelling the facial expressions and the other modgetlie illumination. To our
knowledge, this model is new. In the context of 3D and 2D rigice tracking invariant
to illumination changes, LaCascia [12] (3D face model) ardjét [10] (2D face model)
had also used a single linear subspace to model changasmirifition. In this paper we
have shown that an independent illumination and deformatidospace may also be used
for fitting an eigenface (i.e. a non-rigid 2D appearancestiasodel of a face). Vasilescu
and Terzopoulos [18] also used a linear model to represeiattizans in the illumination
and appearance of an eigenface, but in their multi-lineasdemodel illumination and
appearance are not independent. In this paper we have shawthéy can be assumed
to be approximately independent. This assumption notabiplgies the training of the
model, which can be made with no manual intervention. We lzdse introduced an
efficient model fitting algorithm, which is able to track a deshing face in real-time and
which performs better than the two other most prominentiefitdracking algorithms.
The ideas presented in this paper could also be applied & atieas of interest in
computer vision. For example, if in our training data we exwie facial expression for



identity, the tracker could also be used for video-basedgmeition.
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