
1

Pattern Recognition Letters
journal homepage: www.elsevier.com

BEBLID: Boosted Efficient Binary Local Image Descriptor

Iago Suáreza,b, Ghesn Sfeira, José M. Buenaposadac,∗∗, Luis Baumelaa

aDepartamento de Inteligencia Artificial. Universidad Politécnica de Madrid. Campus Montegancedo s/n. 28660 Boadilla del Monte, Spain
bThe Graffter. Centro de Empresas UPM. Campus Montegancedo s/n. 28223 Pozuelo de Alarcón, Spain
cETSII. Universidad Rey Juan Carlos. C/ Tulipán, s/n. 28933 Móstoles, Spain

ABSTRACT

Efficient matching of local image features is a fundamental task in many computer vision applications.
However, the real-time performance of top matching algorithms is compromised in computationally
limited devices, such as mobile phones or drones, due to the simplicity of their hardware and their
finite energy supply. In this paper we introduce BEBLID, an efficient learned binary image descriptor.
It improves our previous real-valued descriptor, BELID, making it both more efficient for matching
and more accurate. To this end we use AdaBoost with an improved weak-learner training scheme that
produces better local descriptions. Further, we binarize our descriptor by forcing all weak-learners
to have the same weight in the strong learner combination and train it in an unbalanced data set to
address the asymmetries arising in matching and retrieval tasks. In our experiments BEBLID achieves
an accuracy close to SIFT and better computational efficiency than ORB, the fastest algorithm in the
literature.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Local1 image representations are designed to match images
in the presence of strong appearance variations, such as il-
lumination changes or geometric transformations. They are
a fundamental component of a wide range of Computer Vi-
sion tasks, including 3D reconstruction (Agarwal et al., 2009;
Schonberger and Frahm, 2016), SLAM (Mur-Artal et al., 2015),
image retrieval (Nister and Stewenius, 2006), tracking (Pernici
and Del Bimbo, 2014), recognition (Lowe, 1999) or pose esti-
mation (Wohlhart and Lepetit, 2015). They are the most pop-
ular image representation approach, because local features are
distinctive, view point invariant, robust to partial occlusions and
very efficient, since they discard low informative image areas.

To produce a local image representation we must detect a set
of salient image structures and provide a description for each of
them. There is a plethora of very efficient detectors for various
low level structures such as corners (Rosten and Drummond,

∗∗Corresponding author: Tel.: +0-000-000-0000; fax: +0-000-000-0000;
e-mail: josemiguel.buenaposada@urjc.es (José M. Buenaposada)

1© 2020. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.

0/

2006), segments (Von Gioi et al., 2010), lines (Suarez et al.,
2018) and regions (Matas et al., 2002), that may be described
by real valued (Lowe, 2004; Bay et al., 2006) or binary (Calon-
der et al., 2010; Rublee et al., 2011; Alahi et al., 2012; Bal-
ntas et al., 2015; Levi and Hassner, 2016; Leutenegger et al.,
2011) descriptors, being the binary ones the fastest to extract
and match. In this paper we address the problem of efficient
binary feature description.

Although the SIFT descriptor was introduced twenty years
ago (Lowe, 1999, 2004), it is still considered the “gold stan-
dard” technique. The recent HPatches benchmark has shown,
however, that there is still a lot of room for improvement (Bal-
ntas et al., 2017). Modern descriptors based on deep models
have boosted the mean Average Precision (mAP) in different
tasks (Balntas et al., 2017) at the price of a sharp increase in
computational requirements. This prevents their use in hard-
ware and battery limited devices such as smartphones, drones or
robots. This problem has been studied extensively and many lo-
cal features detectors (Rosten and Drummond, 2006; Von Gioi
et al., 2010; Rublee et al., 2011) and descriptors (Leutenegger
et al., 2011; Calonder et al., 2010) have emerged, that enable
real-time performance on resource limited devices, at the price
of an accuracy significantly lower than SIFT.

We have recently introduced BELID (Suárez et al., 2019),

2

an efficient real-valued descriptor. Our features use the inte-
gral image to efficiently compute the difference between the
mean gray values in a pair of square image regions. In BE-
LID we use the BoostedSSC algorithm (Shakhnarovich, 2005)
to discriminatively select a set of features and combine them to
produce a strong description. BELID achieves execution times
close the fastest technique in the literature, ORB (Rublee et al.,
2011), with an accuracy similar to that of SIFT. Specifically, it
provides an accuracy better than SIFT in the patch verification
and worse in the image matching and patch retrieval tasks of
the HPatches benchmark (Balntas et al., 2017). Here we use
AdaBoost to improve BELID’s feature selection procedure and
binarize its description.

In this paper we introduce BEBLID (Boosted Efficient Bi-
nary Local Image Descriptor), a very efficient binary local im-
age descriptor. We use AdaBoost to train our new descriptor
with an unbalanced data set to address the heavily asymmetric
image matching problem. To binarize our descriptor we min-
imize a new similarity loss in which all weak learners share
a common weight. In our experiments BEBLID beats both in
terms of accuracy and speed ORB (Rublee et al., 2011), the
fastest binary descriptor, BinBoost (Trzcinski et al., 2015) and
LATCH (Levi and Hassner, 2016), the top performing binary
descriptors among the non-Deep Learning literature.

2. Related work

SIFT is the most well-known feature detection and descrip-
tion algorithm (Lowe, 1999, 2004). It is widely used because
it has a good performance in many Computer Vision tasks.
However, it is computationally quite demanding requiring the
use of a GPU to achieve real-time performance in certain con-
texts (Björkman et al., 2014).

A number of different descriptors, such as SURF (Bay et al.,
2006), BRIEF (Calonder et al., 2010), BRISK (Leutenegger
et al., 2011), ORB (Rublee et al., 2011), FREAK (Alahi et al.,
2012), BOLD (Balntas et al., 2015) have emerged to speed up
SIFT. Binary approaches produce a binary valued descriptor
that is very efficient in terms of memory usage and matching
speed. The fastest binary approaches, BRIEF, BRISK, FREAK,
ORB, and BOLD, use features based on the comparison of pairs
of image pixels. The key for their speed is the use of a limited
number of comparisons selected to be uncorrelated with an un-
supervised approach. BRIEF uses a fixed size (9×9) smoothing
convolution kernel before comparing up to 512 randomly lo-
cated pixel value pairs. BRISK uses a circular pattern, smooth-
ing the pixel with a Gaussian of increasing variance the further
the pixel is from the center of the pattern. FREAK chooses un-
correlated pixel pairs from a circular pattern, similar to BRISK,
with overlapping Gaussians. The ORB descriptor is an exten-
sion of BRIEF that takes into account different orientations of
the detected local feature. In this case the smoothing is done
with an integral image with a fixed sub-window size. It uses a
greedy algorithm to uncorrelate the chosen pixel pairs. BOLD
uses pairwise comparisons estimated like ORB, from which it
selects a set of patch adapted comparisons that decrease intra-
patch distances. The main drawback of these approaches is that

Fig. 1. Visualization of BELID and BEBLID pixel location sampling pairs
(left) and spatial weight heat maps (right) trained on the Liberty patches
data set. Both learn a well distributed set of point pairs giving more im-
portance to the center area.

they trade accuracy for speed, performing significantly worse
than SIFT.

Descriptors based on supervised learning algorithms may
further improve the performance. DAISY (Tola et al.,
2008) learns pooling regions and how to perform dimen-
sionality reduction. Simonyan et al. (2014) estimate these
hyper-parameters with Convex Optimization, whereas Bin-
Boost (Trzcinski et al., 2015) and BELID (Suárez et al., 2019)
use Boosting. The LATCH descriptor (Levi and Hassner, 2016)
compares the gray values in three regions selected to be uncor-
related and discriminative in the patch verification problem.

Deep Learning enables end-to-end supervised learning of de-
scriptors. CNN-based methods are trained using pairs or triples
of cropped patches. Some use Siamese nets (Han et al., 2015),
L2 based loss and hard negative mining (Tian et al., 2017) or
a modified triplet-based loss (Mishchuk et al., 2017). Other
methods optimize a loss related to the Average Precision (He
et al., 2018), an improved triplet loss to help focus on hard ex-
amples in training (Wei et al., 2018) or weigh triplets by their
difficulty (Zhang and Rusinkiewicz, 2019). L2Net (Tian et al.,
2017) is the most popular CNN descriptor architecture, which
is also used in Hardnet (Mishchuk et al., 2017) and DOAP (He
et al., 2018). Few Deep Learning methods address the prob-
lem of efficiency in the description. TFeat (Vassileios Balntas
and Mikolajczyk, 2016) uses triplets in a very efficient way for
training and a very shallow CNN for speed. All these meth-
ods have improved by a large margin the performance of SIFT
in the HPatches benchmark. However, they are computation-
ally more expensive. TFeat, one of the fastest Deep Learning-
based descriptors, running in a GPU is 4× slower than ORB in
a CPU (Balntas et al., 2017). A larger model, such as L2Net,
running in a GPU is 15× times slower than ORB in a CPU (Tian
et al., 2017).

In this paper we present BEBLID, a binary descriptor that
uses a Boosting scheme to select the most discriminative inten-
sity pairwise tests in a local image region (see Fig. 1). Like the
fastest binary approaches, our features are based on differences
of gray values. However, as in BELID, we compute the differ-
ence of the mean gray values in a box. The box size represents a
scale parameter that improves the discrimination (Suárez et al.,
2019). In BEBLID, similarly to BinBoost (Trzcinski et al.,
2015), we search for the best features using a Boosting scheme.
However, each bit in the description produced by BinBoost is
a combination of gradient-based features, that are computation-
ally more expensive than simple pairwise tests. In our experi-
ments we prove that our simple and very efficient scaled inten-

3

+1

-1

+1

-1

=

1

0

1

0

0

0

0

0

Fig. 2. BEBLID descriptor extraction workflow. To describe an image
patch, BEBLID efficiently calculates the mean gray value of the pixels in
the red and blue boxes. For each pair of red-blue boxes it subtracts their
average values obtaining f(x), the WL. It then thresholds f(x) to obtain h(x)
and the binary descriptor D(x) = h(x) ≥ 0.

sity pairwise tests beat BinBoost’s quantized gradient features
both in terms of accuracy and speed.

3. Boosted Efficient Binary Local Image Descriptor

In this section we present our binary image descriptor, BE-
BLID. To this end, we first introduce a real-valued descriptor
based on AdaBoost (see Section 3.1). The use of AdaBoost
in our weak learner (WL) selection strategy enables us to train
with unbalanced data sets. This is further simplified into a bi-
nary descriptor when all WL share the same weights (see Sec-
tion 3.3). The key for the efficiency of both descriptors lies in
the use of a very efficient WL, based on thresholded pairwise
tests computed on square patch regions of arbitrary size (see
Section 3.2).

3.1. Real valued Boosted Efficient Local Image Descriptor

Let {(xi, yi, li)}
N
i=1 be a training set composed of pairs of im-

age patches, xi, yi ∈ X, and labels li ∈ {−1, 1}. Where li = 1
means that both patches correspond to the same salient image
structure and li = −1 that they are different. We use AdaBoost
to minimize the loss

LBELID =

N∑
i=1

exp

−γli
K∑

k=1

αkhk (xi) hk
(
yi
)

︸ ︷︷ ︸
gs(xi,yi)

 , (1)

where γ is the shrinkage or learning rate parameter and hk(z) ≡
hk(z; f ,T) corresponds to the k-th WL combined with weight
αk in the ensemble gs. The WL depends on a feature extraction
function f : X → R and a threshold T . Given f and T we
define our WL by thresholding f (x) with T ,

h(x; f ,T) =

{
+1 if f (x) ≤ T
−1 if f (x) > T . (2)

The loss in Eq. 1 can be seen as a similarity learning function
given by gs and h(x) is the vector of K WL responses for image
patch x. The descriptor of this patch is given by

D(x) = A
1
2 h(x) = [

√
α1 · h1(x), . . . ,

√
αK · hK(x)]> (3)

where A = diag(α1, . . . , αk) and αi is the AdaBoost weight for
the i-th WL, hi(x). We denote this descriptor as BELID-U-ADA
(Boosted Efficient Local Image Descriptor, Un-optimized,
trained with AdaBoost) in contrast to BELID (Suárez et al.,
2019) that learns a complete matrix Amodeling the correlations
among WLs (see Section 3.4).

3.2. Thresholded Average Box weak learner

The key for BEBLID’s efficiency is selecting an f (x) that is
both discriminative and fast to compute. We define our feature
extraction function, f (x),

f (x; p1,p2, s) =
1
s2

 ∑
q∈R(p1,s)

I(q) −
∑

r∈R(p2,s)

I(r)

 , (4)

where I(t) is the gray value at pixel t and R(p, s) is the square
box centered at pixel p with size s. Thus, f computes the dif-
ference between the mean gray values of the pixels in R(p1, s)
and R(p2, s). The red and blue squares in Fig. 2 represent, re-
spectively, R(p2, s) and R(p1, s).

On each AdaBoost iteration, we find the best WL by eval-
uating: 1) a fixed number, Np, of pixel pairs (p1, p2); 2) all
square regions of size s; and 3) all thresholds T . Inspired by
BoostedSSC (Shakhnarovich, 2005) we have developed an ef-
ficient algorithm (see Alg. 1) to select the best discrete thresh-
old for a given WL candidate without an exhaustive evaluation.
The algorithm takes as input the responses of f (x; p1,p2, s)
at each pair of patches and finds the threshold that minimizes
the weighted classification error. The algorithm has O(P log P)
(P = 2N) complexity that derives from the sorting step in line
9, this allows us for a fast search over all possible thresholds.

To speed up the computation of f , we use S , the integral of
the input image. Once S is available, the sum of gray levels in
a square box can be computed with 4 memory accesses and 3
arithmetic operations. To make our descriptor invariant to eu-
clidean transformations, we orient and scale our measurements
with the underlying local structure.

3.3. Binary descriptor learning

To obtain a binary description we optimize the loss

LBEBLID =

N∑
i=1

exp

−γli
K∑

k=1

hk(x)hk(y)

 , (5)

where γ is the common WLs weight. In practice it acts as a
shrinkage parameter that determines the training speed. Since
we stop the training process if the algorithm is not able to find a
WL better than random guessing, γ also determines the number
of selected WLs.

Finally, to have a {0, 1} output, we convert the -1 output to 0
and the +1 output to 1 (see Fig. 2). This new binary descriptor is
termed BEBLID, that stands for Boosted Efficient Binary Local
Image Descriptor.

This is a Boosting scheme in which all WLs have the same
contribution to the final strong decision. The intuition behind
this scheme is the following. In an AdaBoost-based minimiza-
tion, such as that used to obtain the BELID-U-ADA descriptor

4

Algorithm 1 ThresholdRate(P, f, W): Evaluation of projection
thresholds given similarity-labeled examples.
Input: Set of labeled pairs P = {(xi, yi, li)}

N
i=1 ⊂ X × {−1, 1}

Input: A feature extraction function f : X → R
Input: Data weights W = [w1, . . . ,wN]
Output: {(Tt, εt)}nt=1, where εt is accuracy with threshold Tt.

1: Let vi,1 := f (xi); vi,2 := f
(
yi
)

, i = 1, . . . ,N
2: Let u1 < . . . < un−1 be the n − 1 unique values of bvi,pe

3: Let ∆ j :=
(
u j+1 − u j

)
/2,, j = 1, . . . , n − 2

4: Let T1 := u1 − ∆1, and T j+1 := u j + ∆ j,, j = 1, . . . , n − 1
5: for all i = 1, ...,N do

6: Let di,1 :=
{
−liwi if vi,1 ≤ vi,2
+liwi if vi,1 > vi,2

7: Let di,2 :=
{
−liwi if vi,1 > vi,2
+liwi if vi,1 ≤ vi,2

8: end for
9: { Sort in ascending order by vi,p value: }

10: {(v(k), d(k))}2N
k=1 ← sort

(
{(vi,p, di,p)}i=1,...,N,p=1,2

)
11: ε0 :=

∑N
i=1 1{li = +1} · wi { 1 is the indicator function }

12: t:=1
13: for all j = 1, ..., t do
14: ε j := ε j−1
15: while v(t) ≤ T j do
16: ε j := ε j + d(t)

17: t:=t+1
18: end while
19: end for

in Section 3.1, the contribution of each WL is weighted by αk.
This constant depends on the success of the k-th WL in solv-
ing a binary patch classification problem. However, we are in-
terested on using our descriptor for solving many other image
related problems. So, the αks are biased by the patch verifi-
cation problem used to compute them. A descriptor in which
all WLs have the same weight actually performs better in other
tasks, such as for example image matching and retrieval. In our
experiments we prove that this intuition is correct.

3.4. BELID, BELID-U and BELID-U-ADA

In our previous work (Suárez et al., 2019) we used Boost-
edSSC (Shakhnarovich, 2005) to compute the BELID-U de-
scriptor by minimizing Eq. 1. As described in Section 3.1,
in this paper we also optimize it with AdaBoost to produce
BELID-U-ADA.

Further, estimating the whole matrix A improves the sim-
ilarity by modeling the correlation between WLs. FP-
Boost (Trzcinski et al., 2015) estimates a symmetric A mini-
mizing

LFP =

N∑
i=1

exp
(
−lih(x)>Ah(y)

)
(6)

with Stochastic Gradient Descent.
BELID (Boosted Efficient Local Image Descriptor) (Suárez

et al., 2019) describes an image patch x as D(x) = B>h(x),

where B = [b1, · · · ,bD] ,b ∈ RK are the eigenvectors associ-
ated to the D largest eigenvalues of matrix A, estimated with
FP-Boost.

4. Experiments

In our experiments we train our models with the popular
Brown data set (Winder and Brown, 2007)2. It contains 64× 64
SIFT detected and cropped gray level image patches from three
different scenes: Notre Dame cathedral, Yosemite National
Park and Liberty statue in New York.

We evaluate our results with the HPatches benchmark (Bal-
ntas et al., 2017). It provides patches extracted from images of
various scenes under different capturing conditions and tested
in verification, matching and retrieval tasks. The set of images
are organized in 6 splits: “a”, “b”, “c”, “illum”, “view”, and
“full”. In the experiments of this paper we use the “full” split
that contains all the scenes in the dataset, whereas in Suárez
et al. (2019) we tested our models in the “a” split.

We evaluate the performance using three measures:

• FPR-95. False Positive Rate at 95% recall in a patch veri-
fication problem.

• AUC. Area Under the ROC Curve in a patch verification
problem. It is a good global measure since it considers all
the curve operation points.

• mAP. Mean Average Precision, as defined in the HPatches
benchmark, for each of the three tasks: patch verification,
image matching and patch retrieval.

We have implemented AdaBoost and the learning and testing
part of the Thresholded Average Box WL in Python. Using
OpenCV 4.1.0 we have also implemented a C++ version3 of our
descriptor extraction algorithms. We use this implementation to
evaluate their execution time in Section 4.5.

In all our experiments we train our models with the Liberty
Statue patches scaled to 32 × 32 pixels. The size values in the
Average Box WL are S = {3, 5, 7, 9, 11, 13, 15}, and its location
constrained to fall inside the image. We quantize f (x) to an
integer, to reduce the set T of WL thresholds.

4.1. AdaBoost vs. BoostedSSC

In the first experiment we compare AdaBoost with Boost-
edSSC in verification and evaluate the relevance of selecting a
good WL. First we train our model with BoostedSSC, a BELID-
U descriptor as in Suárez et al. (2019). Then we train three
versions of the BELID-U-ADA descriptor:

• BELID-U-ADA-Rand. In each AdaBoost iteration we
use 500 candidate WLs randomly selecting location
(p1, p2), scale s from S and threshold T from T .

2http://matthewalunbrown.com/patchdata/patchdata.html
3The C++ code with the pre-trained descriptors BEBLID-256-M and

BEBLID-512-M (explained in section 4.4) has been made public in https:

//github.com/iago-suarez/BEBLID

5

Fig. 3. ROC Curve for the verification task in the Brown data sets. We com-
pare BoostedSSC with AdaBoost selecting in each iteration the best WL of
a random selection (BELID-U-ADA-Rand), or by exhaustively searching
for some of the WL parameters (BELID-U-ADA), or further normalizing
the weights of the positive and negative classes.

• BELID-U-ADA. In each AdaBoost iteration we randomly
select Np = 500 candidate pixel locations (p1, p2). Then
we exhaustively evaluate all scales s ∈ S and all thresholds
t ∈ T for each (p1, p2) pair.

• BELID-U-ADA-Balanced. Same as in BELID-U-ADA,
but in this case we normalize the data weights to sum 0.5
for the negative and positive classes.

In Fig. 3 we show the results for the descriptors trained on a
balanced data set of 200K patches pairs from the Liberty scene.
We test the methods in a balanced data set of 100K patches
pairs from the Notredame scene. We observe a reduction in
FPR-95 from 26.8%, with BELID-U-ADA-Rand, to 22.2%,
with BELID-U-ADA. Since the only difference between both
algorithms is the exhaustive search along the scale, s, and
threshold, T , parameters in the BELID-U-ADA approach, then
we can infer that to achieve top performance it is important
to search for good WLs. This justifies the use of Alg. 1 to
speed up the optimal threshold search. Also, the performance
of BELID-U-ADA-Balanced is equivalent to that of BELID-
U, based on BoostedSSC. Hence we experimentally prove that
BoostedSSC is just AdaBoost with the assumption of equal pri-
ors for positive and negative classes. Finally, an equal prior
algorithm, BELID-U-ADA-Balanced, marginally improves the
performance of BELID-U-ADA in this balanced verification
problem. This is a first hint of the importance of selecting the
appropriate priors when training the descriptor. In the next sec-
tion we analyze this in more detail.

4.2. Asymmetric training

Here we exploit the fact that our key problems, matching
and retrieval, are asymmetric. We evaluate the performance of
descriptors trained with AdaBoost using unbalanced data sets
from the Liberty scene. In our experiments we fix the number of
training data to 1 million. To train with a data set with X% pos-
itives, we first randomly select X*10k positive samples. Then
randomly generate negative pairs up to 1 million. In Table 1 we
show the results for BELID-U-ADA and BEBLID descriptors

0.01 0.02 0.03 0.04 0.05
Learning Rate

10

20

30

40

50

60

70

m
A

P

Verification

Matching

Retrieval

BEBLID 512

BEBLID 304

BEBLID 279

BEBLID 259

BEBLID 242

BEBLID 206

BEBLID 143

BEBLID 96

BEBLID 63

Fig. 4. BEBLID learning rate selection experiment. We show the mAP
for verification, matching and retrieval in the “full” split of Hpatches for
models trained with different learning rates, γ, in the Liberty data set.

with 512 components. In Table 2 we provide the learning rates
used when training these descriptors.

The test set for the HPatches verification problem consists of
200K positives and 1 million negative examples (see ”Verifica-
tion” results in Table 1). However, we have also added results
for a fully balanced test set (see ”Verification-balanced” in Ta-
ble 1).

The BELID-U-ADA results in Table 1 for the verification-
balanced problem provide the best AUC=85.59% with the bal-
anced training data set. We get the best result for matching,
mAP=20.11%, with the most unbalanced set (5% positives). In
the retrieval problem we also get the best results with the most
unbalanced training set. With BEBLID we have similar results.
We get the best descriptor for the verification-balanced with the
balanced training set, AUC=85.52%. In matching and retrieval
we also get the best result with an unbalanced training. How-
ever, in this case, the results with 5% positives are worse than
those with 20%. We speculate this is due to the small number
of positives, 50K pairs in this case, that is scarce for training
a BEBLID descriptor. We have experienced the same problem
with 1% positives.

In summary, dealing with the asymmetry in the target prob-
lem is fundamental to improve the accuracy of image descrip-
tors. Specifically, matching and retrieval tasks on one side, and
verification on the other, need different descriptors. Here we
have considered the use of AdaBoost trained with unbalanced
data sets to address this issue.

4.3. Tuning BEBLID learning rate

In this experiment we use a training set from Liberty with
20% positives, selected as described in section 4.2. We train
BEBLID with different learning rates, γ. In Fig. 4 we show
the accuracy results in HPatches. We also display the number
of bits of the resultant descriptor. As expected, the larger the
learning rate the lower the number of iterations and bits of the
descriptor. To get the desired number of bits (=WLs), K, we
select a small enough value for γ and keep the first K WLs, that
are also the most significant ones. We get the best results with
512 WLs and γ = 0.0055.

4.4. Comparison with the state-of-the-art

In this section we compare our binary descriptor with the
most relevant approaches in the literature. Fig. 5 shows the re-

6

Table 1. Results in the “full” split of HPatches when training with different ratios of positive samples (50%, 20% and 5%) from the Liberty data set.
Verification - balanced (AUC) Verification (mAP) Matching (mAP) Retrieval (mAP)
50% 20% 5% 50% 20% 5% 50% 20% 5% 50% 20% 5%

BELID-U-ADA (512f) 85.59 85.41 84.33% 67.41% 67.34% 66.17% 17.89% 18.73% 20.11% 30.00% 30.79% 32.22%
BEBLID (512b) 85.52 84.97 84.44 67.14% 67.31% 66.52% 17.44% 21.84% 21.69% 29.87% 33.82% 33.74%

Table 2. Learning rates for the descriptors in Table 1.
50% 20% 5%

BELID-U-ADA (512f) 0.1 0.1 0.4
BEBLID (512b) 0.0055 0.0055 0.0025

sults of various BEBLID configurations and those of other com-
petitors. Here we compare our binary descriptor trained for the
balanced verification problem (“V” suffix) and for the match-
ing problem (“M” suffix) with ORB, BRISK, FREAK, LATCH,
BinBoost, BELID and SIFT. We train descriptors with suffixes
“M” and “V” with 20% and 50% positives respectively (see sec-
tion 4.2). We do not display results for BOLD and BRIEF since
they are respectively worse than BinBoost and ORB (Balntas
et al., 2017). We use the OpenCV implementation of BRISK,
FREAK and LATCH. The results of SIFT, ORB and BinBoost
come from the HPatches benchmark database.

In the HPatches verification testing set, with 16.66% pos-
itives (200K positives, 1M negatives), all boosting-based de-
scriptors (BELID, BEBLID, BinBoost) are better than SIFT
(mAP=65.12%) while LATCH, ORB, FREAK are worse. The
real-valued BELID descriptors (Suárez et al., 2019), trained
in the balanced Liberty data set, get the best results among
non-CNN descriptors. The performance of BEBLID is behind
that of BELID because of the binarization and because it does
not take into account the correlations between WLs. The bal-
anced version of our new binary descriptor, BEBLID-512-V, is
marginally behind BEBLID-512-M because of the unbalanced
testing set. Moreover, BEBLID-512-M, with mAP=67.31%,
and all other versions of BEBLID are better than BinBoost, the
best binary descriptor, and SIFT. This is remarkable since both
use gradient based features whereas BEBLID uses simple av-
erage gray level differences. This is not surprising, however,
since gray level differences for different box sizes is an approx-
imation to the gradient at different scales.

Our best binary descriptor in the matching problem
is BEBLID-512-M. Trained with unbalance data it gets
mAP=21.84%, which is worse than SIFT, mAP=25.44% but,
as we will see in the next section, it is two orders of mag-
nitude faster. BRISK and FREAK are the worse descriptors
both in image matching and patch retrieval. In the former prob-
lem BinBoost also shows poor accuracy, mAP=14.73%. Here
the main difference with the patch verification problem is the
asymmetry of the matching problem. Two key differences be-
tween BEBLID-512-M and BinBoost are that we use unbal-
anced training and a simpler ensemble with common weights.
LATCH gets better results in matching than FREAK, BRISK,
BinBoost and ORB. However, in patch retrieval, it is worse than
BinBoost. BEBLID-512-M beats all its binary competitors both
in the image matching and patch retrieval problems. This result
validates our decisions in Section 3.3.

The number of bits used by a binary descriptor is impor-
tant. When we halve the number of bits, from 512 to 256,
the performance of BEBLID-M drops 1.07 in verification, 1.94
in matching and 1.53 in retrieval. Something similar happens
with BEBLID-V. Here BEBLID-256-M and BEBLID-256-V
are comparable with ORB and BinBoost, since all of them use
256 bits. In this case we beat both descriptors in matching. In
patch retrieval, BEBLID-256-M is marginally worse than Bin-
Boost. However, we get marginally better results than BinBoost
using 512 simple WLs (BEBLID-512-M) while BinBoost uses
gradient based WLs. In the next section we will see that this is
an important drawback for BinBoost in terms of efficiency.

We have added to Fig. 5 Hardnet (Mishchuk et al., 2017), a
representative CNN-based descriptor. Hardnet beats by a large
margin all handcrafted and learned descriptors, but it has much
higher computational requirements.

In summary, we have shown that with our approach we get
the best accuracy among non CNN-based binary descriptors in
the verification, matching and retrieval problems. This is due to
the two key ideas: WLs based on thresholded and scaled pair-
wise comparisons, and the adaptation of the training process to
the level of asymmetry of the problem.

4.5. Execution time in different platforms

In the last experiment we test the C++ implementation of
BEBLID processing full images (not cropped patches) in a
desktop CPU, Intel Core i7-8750H, and in two limited CPUs,
Exynox Octa 7870 and Snapdragon 855. We report the descrip-
tion execution time in the Mikolajczyk and Schmid (2005) data
set, composed by 48 800 × 640 images from 8 different scenes.
In each of them we detect a maximum of 2000 local structures
with SURF. In this case we use the implementation of BinBoost
in OpenCV, BinBoost32-256, with a descriptor of 256 bits and
32 gradient based WLs per bit, with 8192 WLs evaluated per
descriptor.

In Table 3 we show the average execution time per image
and the size of each descriptor in terms of the number of com-
ponents, that can be floating point numbers (f) or bits (b). We
compare the execution time with C++ implementations of BE-
LID (Suárez et al., 2019) and other relevant descriptors in the
OpenCV library: SIFT (Lowe, 2004), ORB (Rublee et al.,
2011), BRISK (Leutenegger et al., 2011), FREAK (Alahi et al.,
2012), LATCH (Levi and Hassner, 2016), BinBoost (Trzcinski
et al., 2015).

On average, it takes 0.21 ms in a desktop CPU and 0.64 in
a smartphone for the most accurate BEBLID implementation,
with 512 bits, to process a 800 × 640 image with 2000 key-
points. This is roughly 20× faster than LATCH, the most re-
cent competing binary descriptor. The 256 bits implementa-
tion is slightly less accurate, but roughly 2× faster. This means
that our implementation of BEBLID with 256 bits is 4× faster

7

In this case we use the implementation of BinBoost in OpenCV, BinBoost32-256, with a descrip-
tor of 256 bits and 32 gradient based WLs per bit, with 8192 WLs evaluated per descriptor.

0 20 40 60 80 100

Patch Verification mAP [%]

Hardnet+

BELID-256

BELID-512

BEBLID-512-M

BEBLID-512-V

BEBLID-256-V

BEBLID-256-M

BinBoost

SIFT

cvFREAK

cvLATCH

ORB

cvBRISK

88.43

71.15

70.99

67.31

67.14

66.57

66.24

65.62

65.12

61.95

59.87

59.11

56.67

Inter Intra

0 20 40 60 80 100

Image Matching mAP [%]

Hardnet+

SIFT

BEBLID-512-M

BELID-512

BELID-256

BEBLID-256-M

BEBLID-512-V

cvLATCH

BEBLID-256-V

ORB

BinBoost

cvBRISK

cvFREAK

52.74

25.44

21.84

21.81

21.13

19.90

17.44

17.14

16.88

15.30

14.73

11.73

9.18

Viewp Illum

0 20 40 60 80 100

Patch Retrieval mAP [%]

Hardnet+

SIFT

BELID-512

BELID-256

BEBLID-512-M

BinBoost

BEBLID-256-M

cvLATCH

BEBLID-512-V

BEBLID-256-V

ORB

cvBRISK

cvFREAK

69.81

41.75

36.36

35.68

33.82

33.42

32.29

29.95

29.87

29.84

28.80

27.00

24.35

HPatches Results
Easy Hard Tough

Fig. 5. Comparison of the state-of-the-art descriptors in the “full” split of the HPatches data set. The marker color indicates the noise level: EASY, HARD,
and TOUGH. INTRA makers in Patch Verification task corresponds to Patch pairs obtained from the same sequence whereas INTER markers are from
different ones. In the Image Matching task, the VIEWP markers refer to scenes with viewpoint distortions and the ILLUM to scenes with illumination
changes. The bar length represents the mean of the six variants of each task.

than OpenCV’s ORB, the fastest binary descriptor in the liter-
ature, and 50× faster than BinBoost, the best binary descriptor
in terms of accuracy. Compared with other competing float-
ing point approaches, BEBLID 512b is as fast as the 512f ver-
sion of BELID-U-ADA and more than 20× faster than BELID
512f, the comparable floating point descriptors. BEBLID 256b
is roughly two orders of magnitude faster than SIFT.

The key for the computational efficiency of BELID and BE-
BLID lies in the use of very efficient WLs based on pairwise
comparisons computed on the integral image. For this reason
BEBLID computational requirements should be similar to those
of ORB. The differences are caused by the fact that we extract
our features in parallel, whereas the present ORB implementa-
tion in OpenCV does not. BELID is less efficient than BEBLID
because it requires an extra multiplication of the WLs measure-
ments, h(w), with matrix B. However, BEBLID is as efficient
as BELID-U-ADA, since in it B is the identity.

From the results in this section we can conclude that BE-
BLID is the most efficient binary descriptor in the literature.
Our new binary descriptor is the best compromise between
mAP and speed. These results support the claim that our de-
scriptor is a faster alternative to SIFT that is able to run in real-
time on low performance devices.

5. Conclusion

In this paper we introduce BEBLID, the best non CNN-based
binary descriptor in the state of the art in terms of accuracy
and the most efficient in terms of computational requirements.
In our experiments we proved that it is faster than the popular
OpenCV implementation of ORB, the fastest descriptor in the
literature. This is due to the use of very efficient image features,

Table 3. Average description time per image, in milliseconds, of various
descriptors in three platforms, two of them power-limited (Exynox Octa
S and Snapdragon 855). The column ”Size” reports the descriptor size in
floating-point (f) or binary (b) values.

Size Intel Core i7 Exynox Snapdragon
8750H Octa S 855

SIFT 128f 14.29 152.30 53.34
ORB 256b 0.45 5.49 1.22

BRISK 512b 0.92 8.27 1.92
FREAK 512b 0.47 4.70 1.25
LATCH 512b 5.21 62.78 8.33

BinBoost32-256 256b 6.55 52.63 12.82
BELID 512f 5.46 40.70 13.95
BELID 256f 2.83 21.46 7.26

BELID-U-ADA 512f 0.25 2.27 0.69
BEBLID 512b 0.21 2.09 0.64
BEBLID 256b 0.11 1.32 0.42

based on gray value differences computed with the integral im-
age. In terms of accuracy BEBLID is better than BinBoost,
the best binary descriptor in the literature, and close to SIFT,
the “gold standard” reference. This is due to the discrimina-
tive scheme used to select the image features and the possibil-
ity of learning the feature scale, represented by the feature box
size. Furthermore, we provide different BEBLID descriptors
trained with unbalanced data sets, to model the asymmetry in
the matching and retrieval problems, which significantly im-
proves the evaluation results.

As discussed in the introduction, feature matching is required
in many other higher level computer vision tasks. In most of
them it is a mid-level process often followed by model fitting,
e.g. RANSAC. This robust fitting step fixes the errors occurred
in the matching procedure. This is possibly one of the reasons
why SIFT is still the most widely used descriptor. Although

8

SIFT is not the best performing approach in terms of accu-
racy, it provides a reasonable trade-off between accuracy and
computational requirements. In the context of real-time perfor-
mance on computationally limited devices, BEBLID represents
the best trade-off as it is faster than ORB with an accuracy close
to that of SIFT.

Acknowledgments

The authors thank the anonymous reviewers for their com-
ments. The following funding is gratefully acknowledged.
Iago Suárez, grant Doctorado Industrial DI-16-08966; José M.
Buenaposada and Luis Baumela, Spanish MINECO project
TIN2016-75982-C2-2-R.

References

Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R., 2009. Building
Rome in a day, in: Proc. of International Conference on Computer Vision,
IEEE. pp. 72–79.

Alahi, A., Ortiz, R., Vandergheynst, P., 2012. FREAK: Fast retina keypoint, in:
Proc. Conference on Computer Vision and Pattern Recognition, IEEE. pp.
510–517.

Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K., 2017. Hpatches: A bench-
mark and evaluation of handcrafted and learned local descriptors, in: Proc.
Conference on Computer Vision and Pattern Recognition, pp. 5173–5182.

Balntas, V., Tang, L., Mikolajczyk, K., 2015. BOLD - Binary online learned
descriptor for efficient image matching, in: Proc. Conference on Computer
Vision and Pattern Recognition, pp. 2367–2375.

Bay, H., Tuytelaars, T., Van Gool, L., 2006. SURF: Speeded up robust features,
in: Proc. European Conference on Computer Vision, Springer. pp. 404–417.

Björkman, M., Bergström, N., Kragic, D., 2014. Detecting, segmenting and
tracking unknown objects using multi-label MRF inference. Computer Vi-
sion and Image Understanding 118, 111 – 127.

Calonder, M., Lepetit, V., Strecha, C., Fua, P., 2010. BRIEF: Binary robust in-
dependent elementary features, in: Proc. European Conference on Computer
Vision, Springer. pp. 778–792.

Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C., 2015. MatchNet: Uni-
fying feature and metric learning for patch-based matching, in: Proc. Con-
ference on Computer Vision and Pattern Recognition, pp. 3279–3286.

He, K., Lu, Y., Sclaroff, S., 2018. Local descriptors optimized for average pre-
cision, in: Proc. Conference on Computer Vision and Pattern Recognition,
pp. 596–605.

Leutenegger, S., Chli, M., Siegwart, R., 2011. BRISK: Binary robust invari-
ant scalable keypoints, in: Proc. of International Conference on Computer
Vision, IEEE. pp. 2548–2555.

Levi, G., Hassner, T., 2016. LATCH: Learned arrangements of three patch
codes, in: IEEE Winter Conference on Applications of Computer Vision
(WACV), IEEE. pp. 1–9.

Lowe, D.G., 1999. Object recognition from local scale-invariant features, in:
Proc. of International Conference on Computer Vision, IEEE. pp. 1150–
1157.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60, 91–110.

Matas, J., Chum, O., Urban, M., Pajdla, T., 2002. Robust wide baseline stereo
from maximally stable extremal regions, in: Proc. British Machine Vision
Conference, pp. 36.1–36.10.

Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local descrip-
tors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27,
1615–1630.

Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J., 2017. Working hard to
know your neighbor’s margins: Local descriptor learning loss, in: Advances
in Neural Information Processing Systems, pp. 4826–4837.

Mur-Artal, R., Montiel, J.M.M., Tardós, J.D., 2015. ORB-SLAM: A versatile
and accurate monocular SLAM system. IEEE Transactions on Robotics 31,
1147–1163.

Nister, D., Stewenius, H., 2006. Scalable recognition with a vocabulary tree, in:
Proc. Conference on Computer Vision and Pattern Recognition, pp. 2161–
2168.

Pernici, F., Del Bimbo, A., 2014. Object tracking by oversampling local fea-
tures. IEEE Transactions on Pattern Analysis and Machine Intelligence 36,
2538–2551.

Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner de-
tection, in: Proc. European Conference on Computer Vision, Springer. pp.
430–443.

Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: An efficient
alternative to SIFT or SURF, in: Proc. of International Conference on Com-
puter Vision, pp. 2564–2571.

Schonberger, J.L., Frahm, J.M., 2016. Structure-from-motion revisited, in:
Proc. Conference on Computer Vision and Pattern Recognition, pp. 4104–
4113.

Shakhnarovich, G., 2005. Learning Task-Specific Similarity. Ph.D. thesis. Mas-
sachusetts Institute of Technology.

Simonyan, K., Vedaldi, A., Zisserman, A., 2014. Learning local feature de-
scriptors using convex optimisation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 36, 1573–1585.

Suarez, I., Muñoz, E., Buenaposada, J.M., Baumela, L., 2018. FSG: A statis-
tical approach to line detection via fast segments grouping, in: Proc. of Int.
Conf. on Intell. Robots Systems, pp. 97–102.

Suárez, I., Sfeir, G., Buenaposada, J.M., Baumela, L., 2019. BELID: Boosted
efficient local image descriptor, in: Proc. of Iberian Conference on Pattern
Recognition and Image Analysis, Springer International Publishing, Cham.
pp. 449–460.

Tian, Y., Fan, B., Wu, F., 2017. L2-Net: Deep learning of discriminative patch
descriptor in euclidean space, in: Proc. Conference on Computer Vision and
Pattern Recognition, pp. 6128–6136.

Tola, E., Lepetit, V., Fua, P., 2008. A fast local descriptor for dense matching,
in: Proc. Conference on Computer Vision and Pattern Recognition, IEEE.
pp. 1–8.

Trzcinski, T., Christoudias, M., Lepetit, V., 2015. Learning image descriptors
with boosting. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 37, 597–610.

Vassileios Balntas, Edgar Riba, D.P., Mikolajczyk, K., 2016. Learning local
feature descriptors with triplets and shallow convolutional neural networks,
in: Proc. British Machine Vision Conference, pp. 119.1–119.11.

Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G., 2010. LSD: A fast
line segment detector with a false detection control. IEEE Transactions on
Pattern Analysis and Machine Intelligence 32, 722–732.

Wei, X., Zhang, Y., Gong, Y., Zheng, N., 2018. Kernelized subspace pooling
for deep local descriptors, in: Proc. Conference on Computer Vision and
Pattern Recognition, pp. 1867–1875.

Winder, S.A., Brown, M., 2007. Learning local image descriptors, in: Proc.
Conference on Computer Vision and Pattern Recognition, IEEE. pp. 1–8.

Wohlhart, P., Lepetit, V., 2015. Learning descriptors for object recognition and
3D pose estimation, in: Proc. Conference on Computer Vision and Pattern
Recognition, pp. 3109–3118.

Zhang, L., Rusinkiewicz, S., 2019. Learning local descriptors with a CDF-
Based dynamic soft margin, in: Proc. of International Conference on Com-
puter Vision.

